The dissolution behavior of delta ferrites in martensitic heat-resistant steel was studied.And the reason why the dissolution rate of delta ferrites decreased with dissolution time was discussed.The experimental resul...The dissolution behavior of delta ferrites in martensitic heat-resistant steel was studied.And the reason why the dissolution rate of delta ferrites decreased with dissolution time was discussed.The experimental results show that the chemical compositions of delta ferrites negligibly change with dissolution time.The decrease of dissolution rate of delta ferrites with dissolution time should be attributed to the change of shape and distribution of delta ferrites.The shape of delta ferrites tends to transfer from polygon to sphere with dissolution time,causing the decrease of specific surface area of delta ferrites.The distribution position of delta ferrites tends to transfer from boundaries of austenite grains to interior of austenite grains with dissolution time,decreasing the diffusion coefficient of alloy atoms.Both them decrease the dissolution rate of delta ferrites.展开更多
A novel process based on centrifugal casting was developed to produce martensitic stainless steel for guideroll materials. Centrifugal casting provides a lower production cost and less of the thermal cracking defects ...A novel process based on centrifugal casting was developed to produce martensitic stainless steel for guideroll materials. Centrifugal casting provides a lower production cost and less of the thermal cracking defects which normally occur in the overlaid welding process. In this study, the effects of Ni on the microstructure and mechanical properties of martensitic stainless steel were investigated. The results show that the addition of Ni resulted in a decrease in the volume fraction of delta ferrite and an increase in the volume fraction of the retained austenite, respectively. Moreover, a tensile strength of 1600 MPa with an elongation of 4% were obtained after tempering at 500℃ for 2 h. These values were higher than those obtained by using the conventional overlaid process.展开更多
18Mn18Cr0.5N steel specimens were preheated at the temperatures from 1100 to 1250°C for 5 min,and then cooled to 950°C and compressed.The cracking behaviors were investigated using optical microscopy and sca...18Mn18Cr0.5N steel specimens were preheated at the temperatures from 1100 to 1250°C for 5 min,and then cooled to 950°C and compressed.The cracking behaviors were investigated using optical microscopy and scanning electron microscopy.The results showed that the hot workability of 18Mn18Cr0.5N steel gradually decreased with increasing preheating temperature between 1100 and 1200°C,and quickly deteriorated up to 1250°C.Above 1200°C,delta ferrite particles appeared in 18Mn18Cr0.5N steel,promoted cavity coalescence on grain boundary,and accelerated surface crack formation during the hot working process.展开更多
基金Funded by the National Natural Science Foundation of China(No.51701100)the China Postdoctoral Science Foundation(No.2020T130552)the Science and Technology Support Plan for Youth Innovation of Colleges in Shandong Province。
文摘The dissolution behavior of delta ferrites in martensitic heat-resistant steel was studied.And the reason why the dissolution rate of delta ferrites decreased with dissolution time was discussed.The experimental results show that the chemical compositions of delta ferrites negligibly change with dissolution time.The decrease of dissolution rate of delta ferrites with dissolution time should be attributed to the change of shape and distribution of delta ferrites.The shape of delta ferrites tends to transfer from polygon to sphere with dissolution time,causing the decrease of specific surface area of delta ferrites.The distribution position of delta ferrites tends to transfer from boundaries of austenite grains to interior of austenite grains with dissolution time,decreasing the diffusion coefficient of alloy atoms.Both them decrease the dissolution rate of delta ferrites.
文摘A novel process based on centrifugal casting was developed to produce martensitic stainless steel for guideroll materials. Centrifugal casting provides a lower production cost and less of the thermal cracking defects which normally occur in the overlaid welding process. In this study, the effects of Ni on the microstructure and mechanical properties of martensitic stainless steel were investigated. The results show that the addition of Ni resulted in a decrease in the volume fraction of delta ferrite and an increase in the volume fraction of the retained austenite, respectively. Moreover, a tensile strength of 1600 MPa with an elongation of 4% were obtained after tempering at 500℃ for 2 h. These values were higher than those obtained by using the conventional overlaid process.
基金supported by the National Science and Technology Support Plan of China(No.2007BAF02B01-03)
文摘18Mn18Cr0.5N steel specimens were preheated at the temperatures from 1100 to 1250°C for 5 min,and then cooled to 950°C and compressed.The cracking behaviors were investigated using optical microscopy and scanning electron microscopy.The results showed that the hot workability of 18Mn18Cr0.5N steel gradually decreased with increasing preheating temperature between 1100 and 1200°C,and quickly deteriorated up to 1250°C.Above 1200°C,delta ferrite particles appeared in 18Mn18Cr0.5N steel,promoted cavity coalescence on grain boundary,and accelerated surface crack formation during the hot working process.