An implicit finite difference method is developed for a one-dimensional frac- tional percolation equation (FPE) with the Dirichlet and fractional boundary conditions. The stability and convergence are discussed for ...An implicit finite difference method is developed for a one-dimensional frac- tional percolation equation (FPE) with the Dirichlet and fractional boundary conditions. The stability and convergence are discussed for two special cases, i.e., a continued seep- age flow with a monotone percolation coefficient and a seepage flow with the fractional Neumann boundary condition. The accuracy and efficiency of the method are checked with two numerical examples.展开更多
Transient behavior of three-dimensional semiconductor device with heat conduc- tion is described by a coupled mathematical system of four quasi-linear partial differential equations with initial-boundary value conditi...Transient behavior of three-dimensional semiconductor device with heat conduc- tion is described by a coupled mathematical system of four quasi-linear partial differential equations with initial-boundary value conditions. The electric potential is defined by an ellip- tic equation and it appears in the following three equations via the electric field intensity. The electron concentration and the hole concentration are determined by convection-dominated diffusion equations and the temperature is interpreted by a heat conduction equation. A mixed finite volume element approximation, keeping physical conservation law, is used to get numerical values of the electric potential and the accuracy is improved one order. Two con- centrations and the heat conduction are computed by a fractional step method combined with second-order upwind differences. This method can overcome numerical oscillation, dispersion and decreases computational complexity. Then a three-dimensional problem is solved by computing three successive one-dimensional problems where the method of speedup is used and the computational work is greatly shortened. An optimal second-order error estimate in L2 norm is derived by using prior estimate theory and other special techniques of partial differential equations. This type of mass-conservative parallel method is important and is most valuable in numerical analysis and application of semiconductor device.展开更多
Characteristic finite difference fractional step schemes are put forward. The electric potential equation is described by a seven-point finite difference scheme, and the electron and hole concentration equations are t...Characteristic finite difference fractional step schemes are put forward. The electric potential equation is described by a seven-point finite difference scheme, and the electron and hole concentration equations are treated by a kind of characteristic finite difference fractional step methods. The temperature equation is described by a fractional step method. Thick and thin grids are made use of to form a complete set. Piecewise threefold quadratic interpolation, symmetrical extension, calculus of variations, commutativity of operator product, decomposition of high order difference operators and prior estimates are also made use of. Optimal order estimates in l2 norm are derived to determine the error of the approximate solution. The well-known problem is thorongley and completely solred.展开更多
Time fractional diffusion equation is usually used to describe the problems involving non-Markovian random walks. This kind of equation is obtained from the standard diffusion equation by replacing the first-order tim...Time fractional diffusion equation is usually used to describe the problems involving non-Markovian random walks. This kind of equation is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α∈(0, 1). In this paper, an implicit finite difference scheme for solving the time fractional diffusion equation with source term is presented and analyzed, where the fractional derivative is described in the Caputo sense. Stability and convergence of this scheme are rigorously established by a Fourier analysis. And using numerical experiments illustrates the accuracy and effectiveness of the scheme mentioned in this paper.展开更多
In this paper, we approximate the solution to time-fractional telegraph equation by two kinds of difference methods: the Grünwald formula and Caputo fractional difference.
A kind of second-order implicit fractional step characteristic finite difference method is presented in this paper for the numerically simulation coupled system of enhanced (chemical) oil production in porous media....A kind of second-order implicit fractional step characteristic finite difference method is presented in this paper for the numerically simulation coupled system of enhanced (chemical) oil production in porous media. Some techniques, such as the calculus of variations, energy analysis method, commutativity of the products of difference operators, decomposition of high-order difference operators and the theory of a priori estimates are introduced and an optimal order error estimates in l^2 norm is derived. This method has been applied successfully to the numerical simulation of enhanced oil production in actual oilfields, and the simulation results ate quite interesting and satisfactory.展开更多
Let,. We study the existence and multiple positive solutions of n-th nonlinear discrete fractional boundary value problem of the form By using a fixed-point theorem on cone, the parameter intervals of problem is estab...Let,. We study the existence and multiple positive solutions of n-th nonlinear discrete fractional boundary value problem of the form By using a fixed-point theorem on cone, the parameter intervals of problem is established.展开更多
In this paper, we investigate the existence of positive solutions for a class of nonlinear q-fractional boundary value problem. By using some fixed point theorems on cone, some existence results of positive solutions ...In this paper, we investigate the existence of positive solutions for a class of nonlinear q-fractional boundary value problem. By using some fixed point theorems on cone, some existence results of positive solutions are obtained.展开更多
The fractional Feynman-Kac equations describe the distributions of functionals of non-Brownian motion, or anomalous diffusion, including two types called the forward and backward fractional Feynman-Kac equations, wher...The fractional Feynman-Kac equations describe the distributions of functionals of non-Brownian motion, or anomalous diffusion, including two types called the forward and backward fractional Feynman-Kac equations, where the nonlocal time-space coupled fractional substantial derivative is involved. This paper focuses on the more widely used backward version. Based on the newly proposed approximation operators for fractional substantial derivative, we establish compact finite difference schemes for the backward fractional Feynman-Kac equation. The proposed difference schemes have the q-th(q = 1, 2, 3, 4) order accuracy in temporal direction and fourth order accuracy in spatial direction, respectively. The numerical stability and convergence in the maximum norm are proved for the first order time discretization scheme by the discrete energy method, where an inner product in complex space is introduced. Finally, extensive numerical experiments are carried out to verify the availability and superiority of the algorithms. Also, simulations of the backward fractional Feynman-Kac equation with Dirac delta function as the initial condition are performed to further confirm the effectiveness of the proposed methods.展开更多
A fractional step scheme with modified characteristic finite differences run- ning in a parallel arithmetic is presented to simulate a nonlinear percolation system of multilayer dynamics of fluids in a porous medium w...A fractional step scheme with modified characteristic finite differences run- ning in a parallel arithmetic is presented to simulate a nonlinear percolation system of multilayer dynamics of fluids in a porous medium with moving boundary values. With the help of theoretical techniques including the change of regions, piecewise threefold quadratic interpolation, calculus of variations, multiplicative commutation rule of differ- ence operators, multiplicative commutation rule of difference operators, decomposition of high order difference operators, induction hypothesis, and prior estimates, an optimal order in 12 norm is displayed to complete the convergence analysis of the numerical algo- rithm. Some numerical results arising in the actual simulation of migration-accumulation of oil resources by this method are listed in the last section.展开更多
As is well known,the definitions of fractional sum and fractional difference of f(z)on non-uniform lattices x(z)=c1z^(2)+c2z+c3 or x(z)=c1q^(z)+c2q^(-z)+c3 are more difficult and complicated.In this article,for the fi...As is well known,the definitions of fractional sum and fractional difference of f(z)on non-uniform lattices x(z)=c1z^(2)+c2z+c3 or x(z)=c1q^(z)+c2q^(-z)+c3 are more difficult and complicated.In this article,for the first time we propose the definitions of the fractional sum and fractional difference on non-uniform lattices by two different ways.The analogue of Euler’s Beta formula,Cauchy’Beta formula on non-uniform lattices are established,and some fundamental theorems of fractional calculas,the solution of the generalized Abel equation on non-uniform lattices are obtained etc.展开更多
The purpose of this study is to acquire some conditions that reveal existence and stability for solutions to a class of difference equations with non-integer orderμ∈(1,2].The required conditions are obtained by appl...The purpose of this study is to acquire some conditions that reveal existence and stability for solutions to a class of difference equations with non-integer orderμ∈(1,2].The required conditions are obtained by applying the technique of contraction principle for uniqueness and Schauder’s fixed point theorem for existence.Also,we establish some conditions under which the solution of the considered class of difference equations is generalized Ulam-Hyers-Rassias stable.Example for the illustration of results is given.展开更多
A finite difference/spectral scheme is proposed for the time fractional Ito equation.The mass conservation and stability of the numerical solution are deduced by the energy method in the L^(2)norm form.To reduce the c...A finite difference/spectral scheme is proposed for the time fractional Ito equation.The mass conservation and stability of the numerical solution are deduced by the energy method in the L^(2)norm form.To reduce the computation costs,the fast Fourier transform technic is applied to a pair of equivalent coupled differential equations.The effectiveness of the proposed algorithm is verified by the first numerical example.The mass conservation property and stability statement are confirmed by two other numerical examples.展开更多
In this paper, three implicit finite difference methods are developed to solve one dimensional time fractional advection-diffusion equation. The fractional derivative is treated by applying right shifted Grünwald...In this paper, three implicit finite difference methods are developed to solve one dimensional time fractional advection-diffusion equation. The fractional derivative is treated by applying right shifted Grünwald-Letnikov formula of order α ∈(0, 1). We investigate the stability analysis by using von Neumann method with mathematical induction and prove that these three proposed methods are unconditionally stable. Numerical results are presented to demonstrate the effectiveness of the schemes mentioned in this paper.展开更多
In this paper,we consider a Riesz space-fractional reaction-dispersion equation (RSFRDE).The RSFRDE is obtained from the classical reaction-dispersion equation by replacing the second-order space derivative with a Rie...In this paper,we consider a Riesz space-fractional reaction-dispersion equation (RSFRDE).The RSFRDE is obtained from the classical reaction-dispersion equation by replacing the second-order space derivative with a Riesz derivative of orderβ∈(1,2]. We propose an implicit finite difference approximation for RSFRDE.The stability and convergence of the finite difference approximations are analyzed.Numerical results are found in good agreement with the theoretical analysis.展开更多
In this paper, we apply the iterative technology to establish the existence of solutions for a fractional boundary value problem with q-difference. Explicit iterative sequences are given to approxinate the solutions a...In this paper, we apply the iterative technology to establish the existence of solutions for a fractional boundary value problem with q-difference. Explicit iterative sequences are given to approxinate the solutions and the error estimations are also given.展开更多
In this paper, we study the boundary value problem for an impulsive fractional <i><span style="font-family:Verdana;"><i>q</i></span></i><span style="font-family:Ve...In this paper, we study the boundary value problem for an impulsive fractional <i><span style="font-family:Verdana;"><i>q</i></span></i><span style="font-family:Verdana;">-difference equation. Based on Banach’s contraction mapping principle, the existence and Hyers-Ulam stability of solutions for the equation which we considered are obtained. At last, an illustrative example is given for the main result.</span>展开更多
In this paper, we discussed the problem of nonlocal value for nonlinear fractional q-difference equation. The classical tools of fixed point theorems such as Krasnoselskii’s theorem and Banach’s contraction principl...In this paper, we discussed the problem of nonlocal value for nonlinear fractional q-difference equation. The classical tools of fixed point theorems such as Krasnoselskii’s theorem and Banach’s contraction principle are used. At the end of the manuscript, we have an example that illustrates the key findings.展开更多
Control systems governed by linear time-invariant neutral equations with different fractional orders are considered. Sufficient and necessary conditions for the controllability of those systems are established. The ex...Control systems governed by linear time-invariant neutral equations with different fractional orders are considered. Sufficient and necessary conditions for the controllability of those systems are established. The existence of optimal controls for the systems is given. Finally, two examples are provided to show the application of our results.展开更多
In recent years,fractional-order chaotic maps have been paid more attention in publications because of the memory effect.This paper presents a novel variable-order fractional sine map(VFSM)based on the discrete fracti...In recent years,fractional-order chaotic maps have been paid more attention in publications because of the memory effect.This paper presents a novel variable-order fractional sine map(VFSM)based on the discrete fractional calculus.Specially,the order is defined as an iterative function that incorporates the current state of the system.By analyzing phase diagrams,time sequences,bifurcations,Lyapunov exponents and fuzzy entropy complexity,the dynamics of the proposed map are investigated comparing with the constant-order fractional sine map.The results reveal that the variable order has a good effect on improving the chaotic performance,and it enlarges the range of available parameter values as well as reduces non-chaotic windows.Multiple coexisting attractors also enrich the dynamics of VFSM and prove its sensitivity to initial values.Moreover,the sequence generated by the proposed map passes the statistical test for pseudorandom number and shows strong robustness to parameter estimation,which proves the potential applications in the field of information security.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11171193 and11371229)the Natural Science Foundation of Shandong Province(No.ZR2014AM033)the Science and Technology Development Project of Shandong Province(No.2012GGB01198)
文摘An implicit finite difference method is developed for a one-dimensional frac- tional percolation equation (FPE) with the Dirichlet and fractional boundary conditions. The stability and convergence are discussed for two special cases, i.e., a continued seep- age flow with a monotone percolation coefficient and a seepage flow with the fractional Neumann boundary condition. The accuracy and efficiency of the method are checked with two numerical examples.
基金supported by National Natural Science Foundation of China(11101244,11271231)National Tackling Key Problems Program(20050200069)Doctorate Foundation of the Ministry of Education of China(20030422047)
文摘Transient behavior of three-dimensional semiconductor device with heat conduc- tion is described by a coupled mathematical system of four quasi-linear partial differential equations with initial-boundary value conditions. The electric potential is defined by an ellip- tic equation and it appears in the following three equations via the electric field intensity. The electron concentration and the hole concentration are determined by convection-dominated diffusion equations and the temperature is interpreted by a heat conduction equation. A mixed finite volume element approximation, keeping physical conservation law, is used to get numerical values of the electric potential and the accuracy is improved one order. Two con- centrations and the heat conduction are computed by a fractional step method combined with second-order upwind differences. This method can overcome numerical oscillation, dispersion and decreases computational complexity. Then a three-dimensional problem is solved by computing three successive one-dimensional problems where the method of speedup is used and the computational work is greatly shortened. An optimal second-order error estimate in L2 norm is derived by using prior estimate theory and other special techniques of partial differential equations. This type of mass-conservative parallel method is important and is most valuable in numerical analysis and application of semiconductor device.
基金This work is supported by the Major State Basic Research Program of China (19990328), the National Tackling Key Problem Program, the National Science Foundation of China (10271066 and 0372052), and the Doctorate Foundation of the Ministry of Education of China (20030422047).
文摘Characteristic finite difference fractional step schemes are put forward. The electric potential equation is described by a seven-point finite difference scheme, and the electron and hole concentration equations are treated by a kind of characteristic finite difference fractional step methods. The temperature equation is described by a fractional step method. Thick and thin grids are made use of to form a complete set. Piecewise threefold quadratic interpolation, symmetrical extension, calculus of variations, commutativity of operator product, decomposition of high order difference operators and prior estimates are also made use of. Optimal order estimates in l2 norm are derived to determine the error of the approximate solution. The well-known problem is thorongley and completely solred.
基金Supported by the Discipline Construction and Teaching Research Fund of LUTcte(20140089)
文摘Time fractional diffusion equation is usually used to describe the problems involving non-Markovian random walks. This kind of equation is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α∈(0, 1). In this paper, an implicit finite difference scheme for solving the time fractional diffusion equation with source term is presented and analyzed, where the fractional derivative is described in the Caputo sense. Stability and convergence of this scheme are rigorously established by a Fourier analysis. And using numerical experiments illustrates the accuracy and effectiveness of the scheme mentioned in this paper.
文摘In this paper, we approximate the solution to time-fractional telegraph equation by two kinds of difference methods: the Grünwald formula and Caputo fractional difference.
基金supported by the Major State Basic Research Development Program of China(G19990328)National Tackling Key Program(2011ZX05011-004+6 种基金2011ZX0505220050200069)National Natural Science Foundation of China(11101244112712311077112410372052)Doctorate Foundation of the Ministry of Education of China(20030422047)
文摘A kind of second-order implicit fractional step characteristic finite difference method is presented in this paper for the numerically simulation coupled system of enhanced (chemical) oil production in porous media. Some techniques, such as the calculus of variations, energy analysis method, commutativity of the products of difference operators, decomposition of high-order difference operators and the theory of a priori estimates are introduced and an optimal order error estimates in l^2 norm is derived. This method has been applied successfully to the numerical simulation of enhanced oil production in actual oilfields, and the simulation results ate quite interesting and satisfactory.
文摘Let,. We study the existence and multiple positive solutions of n-th nonlinear discrete fractional boundary value problem of the form By using a fixed-point theorem on cone, the parameter intervals of problem is established.
文摘In this paper, we investigate the existence of positive solutions for a class of nonlinear q-fractional boundary value problem. By using some fixed point theorems on cone, some existence results of positive solutions are obtained.
基金Project supported by the National Natural Science Foundation of China(Grant No.11471262)Henan University of Technology High-level Talents Fund,China(Grant No.2018BS039)
文摘The fractional Feynman-Kac equations describe the distributions of functionals of non-Brownian motion, or anomalous diffusion, including two types called the forward and backward fractional Feynman-Kac equations, where the nonlocal time-space coupled fractional substantial derivative is involved. This paper focuses on the more widely used backward version. Based on the newly proposed approximation operators for fractional substantial derivative, we establish compact finite difference schemes for the backward fractional Feynman-Kac equation. The proposed difference schemes have the q-th(q = 1, 2, 3, 4) order accuracy in temporal direction and fourth order accuracy in spatial direction, respectively. The numerical stability and convergence in the maximum norm are proved for the first order time discretization scheme by the discrete energy method, where an inner product in complex space is introduced. Finally, extensive numerical experiments are carried out to verify the availability and superiority of the algorithms. Also, simulations of the backward fractional Feynman-Kac equation with Dirac delta function as the initial condition are performed to further confirm the effectiveness of the proposed methods.
基金Project supported by the Major State Basic Research Program of China (No. 19990328)the National Tackling Key Problems Program (No. 20050200069)+4 种基金the National Natural Science Foundation of China (Nos. 10771124, 10372052, 11101244, and 11271231)the Doctorate Foundation of the Ministry of Education of China (No. 20030422047)the Shandong Province Natural Science Foundation (No. ZR2009AQ012)the Independent Innovation Foundation of Shandong University(No. 2010TS031)the Scientific Research Award Fund for Excellent Middle-Aged and Young Scientists of Shandong Province (No. BS2009NJ003)
文摘A fractional step scheme with modified characteristic finite differences run- ning in a parallel arithmetic is presented to simulate a nonlinear percolation system of multilayer dynamics of fluids in a porous medium with moving boundary values. With the help of theoretical techniques including the change of regions, piecewise threefold quadratic interpolation, calculus of variations, multiplicative commutation rule of differ- ence operators, multiplicative commutation rule of difference operators, decomposition of high order difference operators, induction hypothesis, and prior estimates, an optimal order in 12 norm is displayed to complete the convergence analysis of the numerical algo- rithm. Some numerical results arising in the actual simulation of migration-accumulation of oil resources by this method are listed in the last section.
基金Supported by the National Natural Science Foundation Fujian province of China(2016J01032).
文摘As is well known,the definitions of fractional sum and fractional difference of f(z)on non-uniform lattices x(z)=c1z^(2)+c2z+c3 or x(z)=c1q^(z)+c2q^(-z)+c3 are more difficult and complicated.In this article,for the first time we propose the definitions of the fractional sum and fractional difference on non-uniform lattices by two different ways.The analogue of Euler’s Beta formula,Cauchy’Beta formula on non-uniform lattices are established,and some fundamental theorems of fractional calculas,the solution of the generalized Abel equation on non-uniform lattices are obtained etc.
文摘The purpose of this study is to acquire some conditions that reveal existence and stability for solutions to a class of difference equations with non-integer orderμ∈(1,2].The required conditions are obtained by applying the technique of contraction principle for uniqueness and Schauder’s fixed point theorem for existence.Also,we establish some conditions under which the solution of the considered class of difference equations is generalized Ulam-Hyers-Rassias stable.Example for the illustration of results is given.
基金the National Natural Science Foundation of China(No.11701103)the Young Top-notch Talent Program of Guangdong Province of China(No.2017GC010379)+4 种基金the Natural Science Foundation of Guangdong Province of China(No.2022A1515012147)the Project of Science and Technology of Guangzhou of China(No.202102020704)the Opening Project of Guangdong Province Key Laboratory of Computational Science at the Sun Yat-sen University of China(2021023)the Science and Technology Development Fund,Macao SAR(File No.0005/2019/A)the University of Macao of China(File Nos.MYRG2020-00035-FST,MYRG2018-00047-FST).
文摘A finite difference/spectral scheme is proposed for the time fractional Ito equation.The mass conservation and stability of the numerical solution are deduced by the energy method in the L^(2)norm form.To reduce the computation costs,the fast Fourier transform technic is applied to a pair of equivalent coupled differential equations.The effectiveness of the proposed algorithm is verified by the first numerical example.The mass conservation property and stability statement are confirmed by two other numerical examples.
文摘In this paper, three implicit finite difference methods are developed to solve one dimensional time fractional advection-diffusion equation. The fractional derivative is treated by applying right shifted Grünwald-Letnikov formula of order α ∈(0, 1). We investigate the stability analysis by using von Neumann method with mathematical induction and prove that these three proposed methods are unconditionally stable. Numerical results are presented to demonstrate the effectiveness of the schemes mentioned in this paper.
基金The authors gratefully acknowledge the support of the National Natural Science Foundation of China under Grant 10271098 the Australian Research Council grant LP0348653.
文摘In this paper,we consider a Riesz space-fractional reaction-dispersion equation (RSFRDE).The RSFRDE is obtained from the classical reaction-dispersion equation by replacing the second-order space derivative with a Riesz derivative of orderβ∈(1,2]. We propose an implicit finite difference approximation for RSFRDE.The stability and convergence of the finite difference approximations are analyzed.Numerical results are found in good agreement with the theoretical analysis.
文摘In this paper, we apply the iterative technology to establish the existence of solutions for a fractional boundary value problem with q-difference. Explicit iterative sequences are given to approxinate the solutions and the error estimations are also given.
文摘In this paper, we study the boundary value problem for an impulsive fractional <i><span style="font-family:Verdana;"><i>q</i></span></i><span style="font-family:Verdana;">-difference equation. Based on Banach’s contraction mapping principle, the existence and Hyers-Ulam stability of solutions for the equation which we considered are obtained. At last, an illustrative example is given for the main result.</span>
文摘In this paper, we discussed the problem of nonlocal value for nonlinear fractional q-difference equation. The classical tools of fixed point theorems such as Krasnoselskii’s theorem and Banach’s contraction principle are used. At the end of the manuscript, we have an example that illustrates the key findings.
基金supported by the Science and Technology Planning Project(2014JQ1041)of Shaanxi Provincethe Scientic Research Program Funded by Shaanxi Provincial Education Department(14JK1300)+1 种基金the Research Fund for the Doctoral Program(BS1342)of Xi’an Polytechnic Universitysupported by Ministerio de Economíay Competitividad and EC fund FEDER,Project no.MTM2010-15314,Spain
文摘Control systems governed by linear time-invariant neutral equations with different fractional orders are considered. Sufficient and necessary conditions for the controllability of those systems are established. The existence of optimal controls for the systems is given. Finally, two examples are provided to show the application of our results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62071496,61901530,and 62061008)the Natural Science Foundation of Hunan Province of China(Grant No.2020JJ5767).
文摘In recent years,fractional-order chaotic maps have been paid more attention in publications because of the memory effect.This paper presents a novel variable-order fractional sine map(VFSM)based on the discrete fractional calculus.Specially,the order is defined as an iterative function that incorporates the current state of the system.By analyzing phase diagrams,time sequences,bifurcations,Lyapunov exponents and fuzzy entropy complexity,the dynamics of the proposed map are investigated comparing with the constant-order fractional sine map.The results reveal that the variable order has a good effect on improving the chaotic performance,and it enlarges the range of available parameter values as well as reduces non-chaotic windows.Multiple coexisting attractors also enrich the dynamics of VFSM and prove its sensitivity to initial values.Moreover,the sequence generated by the proposed map passes the statistical test for pseudorandom number and shows strong robustness to parameter estimation,which proves the potential applications in the field of information security.