Utilities around the world have been considering Demand Side Management (DSM) in their strategic planning. The costs of constructing and operating a new capacity generation unit are increasing everyday as well as Tran...Utilities around the world have been considering Demand Side Management (DSM) in their strategic planning. The costs of constructing and operating a new capacity generation unit are increasing everyday as well as Transmission and distribution and land issues for new generation plants, which force the utilities to search for another alternatives without any additional constraints on customers comfort level or quality of delivered product. De can be defined as the selection, planning, and implementation of measures intended to have an influence on the demand or customer-side of the electric meter, either caused directly or stimulated indirectly by the utility. DSM programs are peak clipping, Valley filling, Load shifting, Load building, energy conservation and flexible load shape. The main Target of this paper is to show the relation between DSM and Load Forecasting. Moreover, it highlights on the effect of applying DSM on Forecasted demands and how this affects the planning strategies for utility companies. This target will be clearly illustrated through applying the developed algorithm in this paper on an existing residential compound in Cairo-Egypt.展开更多
Microgrids are a type of restricted power distribution systems in which electricity is generated,transmitted,and distributed within a small geographic region.They are used to ensure that renewable energy sources are u...Microgrids are a type of restricted power distribution systems in which electricity is generated,transmitted,and distributed within a small geographic region.They are used to ensure that renewable energy sources are used to their full potential.Microgrids provide further benefits,such as lowering transmission losses and the expenses associated with them.This research compares and contrasts the aims of economic dispatch,emission dispatch,fractional programing based combined economic emission dispatch,and environmental restricted economic dispatch(ECED).A low-voltage microgrid system is investigated for three different scenarios.As a study optimization tool,an innovative,resilient,and strong hybrid swarm-intelligence optimization algorithm is utilised,which is based on combining the properties of the traditional grey-wolf optimiser,sine-cosine algorithm,and crow search algorithm.The employment of a time-of-use energy mar-ket pricing approach instead of a fixed pricing plan resulted in a 15%decrease in gen-eration costs throughout the course of the research.When ECED was assessed with a 15%-20%demand side management based restructured load demand model for the microgrid system,the generation costs were reduced even further.展开更多
This paper studies price-based residential demand response management(PB-RDRM)in smart grids,in which non-dispatchable and dispatchable loads(including general loads and plug-in electric vehicles(PEVs))are both involv...This paper studies price-based residential demand response management(PB-RDRM)in smart grids,in which non-dispatchable and dispatchable loads(including general loads and plug-in electric vehicles(PEVs))are both involved.The PB-RDRM is composed of a bi-level optimization problem,in which the upper-level dynamic retail pricing problem aims to maximize the profit of a utility company(UC)by selecting optimal retail prices(RPs),while the lower-level demand response(DR)problem expects to minimize the comprehensive cost of loads by coordinating their energy consumption behavior.The challenges here are mainly two-fold:1)the uncertainty of energy consumption and RPs;2)the flexible PEVs’temporally coupled constraints,which make it impossible to directly develop a model-based optimization algorithm to solve the PB-RDRM.To address these challenges,we first model the dynamic retail pricing problem as a Markovian decision process(MDP),and then employ a model-free reinforcement learning(RL)algorithm to learn the optimal dynamic RPs of UC according to the loads’responses.Our proposed RL-based DR algorithm is benchmarked against two model-based optimization approaches(i.e.,distributed dual decomposition-based(DDB)method and distributed primal-dual interior(PDI)-based method),which require exact load and electricity price models.The comparison results show that,compared with the benchmark solutions,our proposed algorithm can not only adaptively decide the RPs through on-line learning processes,but also achieve larger social welfare within an unknown electricity market environment.展开更多
The building sector and its heating and cooling represents one of the major consumer of energy worldwide. Simultaneously, the share of fluctuating generation of renewable energies in the energy mix increases. Therefor...The building sector and its heating and cooling represents one of the major consumer of energy worldwide. Simultaneously, the share of fluctuating generation of renewable energies in the energy mix increases. Therefore storage and demand side management technologies are required. The new adaptive and predictive control algorithm for thermally activated building systems (TABS) based on multiple linear regression (AMLR) presented in this paper enables the application of demand side management (DSM) strategies. Based on simulations, different strategies have been compared with each other. By applying the AMLR algorithm, electricity energy cost savings of 38% could be achieved compared to the conventional control strategy for TABS, while increasing the thermal comfort. At the same time, thermal energy demand can be reduced in the range between 4% to 8%, and pump operation time from 86% to 89%.展开更多
In the framework of liberalized deregulated electricity market, dynamic competitive environment exists between wholesale and retail dealers for energy supplying and management. Smart Grids topology in form of energy m...In the framework of liberalized deregulated electricity market, dynamic competitive environment exists between wholesale and retail dealers for energy supplying and management. Smart Grids topology in form of energy management has forced power supplying agencies to become globally competitive. Demand Response (DR) Programs in context with smart energy network have influenced prosumers and consumers towards it. In this paper Fair Emergency Demand Response Program (FEDRP) is integrated for managing the loads intelligently by using the platform of Smart Grids for Residential Setup. The paper also provides detailed modelling and analysis of respective demands of residential consumers in relation with economic load model for FEDRP. Due to increased customer’s partaking in this program the load on the utility is reduced and managed intelligently during emergency hours by providing fair and attractive incentives to residential clients, thus shifting peak load to off peak hours. The numerical and graphical results are matched for intelligent load management scenario.展开更多
In this paper, an autonomous and distributive demand-side management based on Bayesian game theory is developed and applied among users in a grid connected micro-grid with storage. To derive that strategy, an energy c...In this paper, an autonomous and distributive demand-side management based on Bayesian game theory is developed and applied among users in a grid connected micro-grid with storage. To derive that strategy, an energy consumption of shiftable loads belonging to a given user is modelled as a noncooperative three-player game of incomplete information, in which each user plays against the storage unit and an opponent gathering all the other users in the micro-grid. Each player is assumed to be endowed with statistical information about its behavior and that of its opponents so that he can take actions maximizing his expected utility. Results of the proposed strategy evaluated by simulating, under MATLAB environment, a connected micro-grid with storage device evidence its efficacy when employed to manage the charging of electric vehicles.展开更多
The smart grid utilizes the demand side management technology to motivate energy users towards cutting demand during peak power consumption periods, which greatly improves the operation efficiency of the power grid. H...The smart grid utilizes the demand side management technology to motivate energy users towards cutting demand during peak power consumption periods, which greatly improves the operation efficiency of the power grid. However, as the number of energy users participating in the smart grid continues to increase, the demand side management strategy of individual agent is greatly affected by the dynamic strategies of other agents. In addition, the existing demand side management methods, which need to obtain users’ power consumption information,seriously threaten the users’ privacy. To address the dynamic issue in the multi-microgrid demand side management model, a novel multi-agent reinforcement learning method based on centralized training and decentralized execution paradigm is presented to mitigate the damage of training performance caused by the instability of training experience. In order to protect users’ privacy, we design a neural network with fixed parameters as the encryptor to transform the users’ energy consumption information from low-dimensional to high-dimensional and theoretically prove that the proposed encryptor-based privacy preserving method will not affect the convergence property of the reinforcement learning algorithm. We verify the effectiveness of the proposed demand side management scheme with the real-world energy consumption data of Xi’an, Shaanxi, China. Simulation results show that the proposed method can effectively improve users’ satisfaction while reducing the bill payment compared with traditional reinforcement learning(RL) methods(i.e., deep Q learning(DQN), deep deterministic policy gradient(DDPG),QMIX and multi-agent deep deterministic policy gradient(MADDPG)). The results also demonstrate that the proposed privacy protection scheme can effectively protect users’ privacy while ensuring the performance of the algorithm.展开更多
The introduction of new kinds of energy mixes to the electricity grid is a challenging environmental task for present and future generations as they fight the pollution and global warming issues associated with urbani...The introduction of new kinds of energy mixes to the electricity grid is a challenging environmental task for present and future generations as they fight the pollution and global warming issues associated with urbanization. Individual appliances and whole buildings that continuously incorporate local intelligence which originates from the new technologies of Internet of Things are the new infrastructure that this integration is based on. Smart Electricity Grids are becoming more intensively integrated with tertiary building energy management systems and distributed energy generators such as wind and solar. This new smart network type harnesses the loT (lnternet of Things) principles by generating a new network made of active elements combined with the necessary control and distributed coordination mechanisms. This new self-organized overlay network of connected DER (distributed energy resources) allows for the seamless management and control of the active grid as well as the efficient coordination and exploration of single and aggregated technical prosumer potential (generation and consumption) to participate in energy balancing and other distributed grid related services, applying energy management strategies based on control and predict of the DERs behavior for facing demand side management issues.展开更多
Recent estimates state that the European Union is on course to achieve only half of the 20% energy consumption reduction target by 2020. As the first governmental stakeholders involved in the implementation of energy ...Recent estimates state that the European Union is on course to achieve only half of the 20% energy consumption reduction target by 2020. As the first governmental stakeholders involved in the implementation of energy saving initiatives, municipalities play a strategic role in the energy planning process. This paper focuses on establishment of an energy planning methodology for small municipalities with numbers of inhabitants in range of 1,000-10,000 which often face common problems associated with low efficient district heat supply systems and decreasing energy consumption in buildings. Particular attention is paid to DSM (demand side management) activities. DSM scheme includes legislative and financial flows with small investments from municipality side. Based on increased information and motivation it promotes reduction of energy consumption in all kinds of buildings. Practical experience has shown that application of DSM measures allows achieving 20% energy savings in municipal buildings during the first year.展开更多
In view of the problem that the requirements of travel demand management and traffic policy-sensitivity are ignored during the establishment process of the travel demand forecasting model, a discrete-choice-based trav...In view of the problem that the requirements of travel demand management and traffic policy-sensitivity are ignored during the establishment process of the travel demand forecasting model, a discrete-choice-based travel demand forecasting model is proposed to demonstrate its applicability to travel demand management. A car-bus discrete choice model is established, including three variables, i. e,, individual socioeconomic characteristics, time, and cost, and the traffic policy-sensitivity is evaluated through two kinds of traffic policies: parking charges and bus priorities. The empirical results show that travel choice is insensitive to the policy of parking charges as 88. 41% of the travelers are insensitive to parking charges; travel choice is, however, sensitive to the policy of bus priorities as 67.70% of the car travelers and 77.02% of the bus travelers are sensitive to bus priorities. The discrete-choice-based travel demand forecasting model is quite policy-sensitive and also has a good adaptability for travel demand management when meeting the basic functions of the demand forecasting model.展开更多
Cyber physical systems(CPS) recently emerge as a new technology which can provide promising approaches to demand side management(DSM), an important capability in industrial power systems. Meanwhile, the manufactur...Cyber physical systems(CPS) recently emerge as a new technology which can provide promising approaches to demand side management(DSM), an important capability in industrial power systems. Meanwhile, the manufacturing center is a typical industrial power subsystem with dozens of high energy consumption devices which have complex physical dynamics. DSM, integrated with CPS, is an effective methodology for solving energy optimization problems in manufacturing center. This paper presents a prediction-based manufacturing center self-adaptive energy optimization method for demand side management in cyber physical systems. To gain prior knowledge of DSM operating results, a sparse Bayesian learning based componential forecasting method is introduced to predict 24-hour electric load levels for specific industrial areas in China. From this data, a pricing strategy is designed based on short-term load forecasting results. To minimize total energy costs while guaranteeing manufacturing center service quality, an adaptive demand side energy optimization algorithm is presented. The proposed scheme is tested in a machining center energy optimization experiment. An AMI sensing system is then used to measure the demand side energy consumption of the manufacturing center. Based on the data collected from the sensing system, the load prediction-based energy optimization scheme is implemented. By employing both the PSO and the CPSO method, the problem of DSM in the manufac^ring center is solved. The results of the experiment show the self-adaptive CPSO energy optimization method enhances optimization by 5% compared with the traditional PSO optimization method.展开更多
Jordan is located in the Middle East in the eastern Mediterranean. It has a surface area of approximately 90,000 km2 and its population reaches 6.3 million. Jordan is the fourth driest countries in the World and water...Jordan is located in the Middle East in the eastern Mediterranean. It has a surface area of approximately 90,000 km2 and its population reaches 6.3 million. Jordan is the fourth driest countries in the World and water demand exceeds Jordan’s available water resources. Annual per capita water availability has declined from 3600 m3/year in 1946 to 145 m3/year today. It is estimated that the population will continue to grow from about 5.87 million in 2008 to over 7.80 million by 2022. Total projected water demand will be 1673 million cubic meters by 2022. Fifteen-year complete records for water consumption were studied to see the supply and demand variation with time. It had been noticed that water demand management will address the actual needs for water. This management program will ensure further reduction in water use, reduce water loses through the distribution supply net, prevent pollution. In addition, it will help minimize water disposal in nature, make efficient use of available water resources, plan for future new water resources prudently and finally impose a real cost for water supply that would be acceptable. In addition to the above, public awareness program is to be put in action. Such a program should be used in schools as well as the media. The public is to be aware of the problem and how they can assist with overcoming the water shortage crisis.展开更多
Most current Travel Demand Management(TDM)programs such as vanpooling,ridesharing,or transit focus on managing travel demand of specific groups of commuters but are limited in effectively managing demand for automobil...Most current Travel Demand Management(TDM)programs such as vanpooling,ridesharing,or transit focus on managing travel demand of specific groups of commuters but are limited in effectively managing demand for automobile drivers,who are unable or unwilling to participate in such programs.This paper highlights results from a pilot field study conducted in a large west coast city experiencing major traffic congestion,and documents results of the use of an incentive-based active demand management(ADM)system focusing on automobile commuters.The system,called“Metropia,”predicts future traffic conditions,applies a proprietary routing algorithm to find time-dependent shortest paths for different departure times,and,based on user request,provides automobile travelers with multiple departure times and route choices.Each of these travel choices are assigned points values,with higher points(and thus more valuable rewards)available for travelling during off-peak times and less congested routes,and lower points available for peak traffic travel times.The goal of this ADM system is to improve traffic flow and commuter travel times citywide,alleviating heavily congested areas without the use of new roadway construction by incentivizing travelers to change their travel behavior and avoid traffic congestion.The level of rewards points available to users(commuters)by the system depends on the travelers’behavioral change degree and their contributions to traffic congestion alleviation.This system was implemented in Los Angeles,Calif.,USA,as a small scale pilot field study carried out beginning April 2013 and lasting for 10 weeks.Results from this field study show the system is able to accurately predict travel time with Relative Mean Absolute Error(RMAE)as low as 15.20%.Significant travel behavior changes were observed which validate the concept of using incentives to influence people’s travel behavior.Furthermore,field study results show 20%travel time can be saved for people who changed their travel behavior.展开更多
The aim of this paper is to assess the importance of Water Demand Management (WDM) strategy to the improvement of water supply and sanitation in Nigeria. Persistent water supply shortages and poor sanitation have sinc...The aim of this paper is to assess the importance of Water Demand Management (WDM) strategy to the improvement of water supply and sanitation in Nigeria. Persistent water supply shortages and poor sanitation have since remained important features of the Nigerian urban and rural communities. Most often governmental solution to these problems has been to develop and exploit the available water resources and the level of sanitation for the people. This predominant approach which is also known as augmentation method is supply driven with the primary purpose being how best to meet the perceived water and sanitation demand. One of the major disadvantages of this approach is the huge financial involvement associated with it. Conversely, quite recently water resource managers have begun to direct attention on how consumers can be motivated to regulate the amount and manner in which they use and dispose water to alleviate pressure on freshwater supplies. This new approach is known as water demand management. It is demand driven in that consumers determine their own water need. Employment of WDM by consumers especially in water scarce areas as was discussed in the paper will decrease the amount of water use, thereby limiting unnecessary financial expenditure in exploiting new sources to meet the ever increasing demand.展开更多
Through the study of mutual process between groundwater systems and eco-environmental water demand, the eco-environmental water demand is brought into groundwater systems model as the important water consumption item ...Through the study of mutual process between groundwater systems and eco-environmental water demand, the eco-environmental water demand is brought into groundwater systems model as the important water consumption item and unification of groundwater抯 economic, environmental and ecological functions were taken into account. Based on eco-environmental water demand at Da抋n in Jilin province, a three-dimensional simulation and optimized management model of groundwater systems was established. All water balance components of groundwater systems in 1998 and 1999 were simulated with this model and the best optimal exploitation scheme of groundwater systems in 2000 was determined, so that groundwater resource was efficiently utilized and good economic, ecologic and social benefits were obtained.展开更多
The majority of Middle East and North Africa(MENA)countries suffer from chronic imbalance between available water supply and rising water demand.This imbalance is expected to worsen even further in the future as a res...The majority of Middle East and North Africa(MENA)countries suffer from chronic imbalance between available water supply and rising water demand.This imbalance is expected to worsen even further in the future as a result of sharp population growth,rapid economic development and climate change,unless major positive measures are implemented to augment water supply and manage water demand.The supply management approach,on its own,practiced by many countries in the region for so many years has so far demonstrated its inability to bridge the“water gap”between available water resources and rising water demand,as most traditional water resourced in almost all MENA countries have been exploited(or over exploited),and the cost of non-traditional water resources has become increasingly prohibitively high,apart from its environmental impact.Demand management is regarded by many water experts in the region as the answer or“panacea”for the water imbalance problem.But,is demand management approach alone able to solve the problem of water scarcity in the MENA region?In other words,if all demand management measures have been fully implemented,would there still be gaps between supply and demand that need to be filled with supply augmentation,andwill supply management options still need to be part of the solution?This paper tries to answer this question by reviewing several works in this domain,particularly,recent studies by the World Bank[9-11].It was concluded that,although water demand management measures should be given the first priority,especially,in the agricultural sector where it has the maximum impact,demand management on its own will not be able to bridge the“water gap”,and supply management options,such as sea water desalination and the re-use of treated wastewater,will be part of the solution.展开更多
Buildings are the main energy consumers across the world,especially in urban communities.Building smartization,or the smartification of housing,therefore,is a major step towards energy grid smartization too.By control...Buildings are the main energy consumers across the world,especially in urban communities.Building smartization,or the smartification of housing,therefore,is a major step towards energy grid smartization too.By controlling the energy consumption of lighting,heating,and cooling systems,energy consumption can be optimized.All or some part of the energy consumed in future smart buildings must be supplied by renewable energy sources(RES),which mitigates environmental impacts and reduces peak demand for electrical energy.In this paper,a new optimization algorithm is applied to solve the optimal energy consumption problem by considering the electric vehicles and demand response in smart homes.In this way,large power stations that work with fossil fuels will no longer be developed.The current study modeled and evaluated the performance of a smart house in the presence of electric vehicles(EVs)with bidirectional power exchangeability with the power grid,an energy storage system(ESS),and solar panels.Additionally,the solar RES and ESS for predicting solar-generated power prediction uncertainty have been considered in this work.Different case studies,including the sales of electrical energy resulting from PV panels’generated power to the power grid,time-variable loads such as washing machines,and different demand response(DR)strategies based on energy price variations were taken into account to assess the economic and technical effects of EVs,BESS,and solar panels.The proposed model was simulated in MATLAB.A hybrid particle swarm optimization(PSO)and gravitational search(GS)algorithm were utilized for optimization.Scenario generation and reduction were performed via LHS and backward methods,respectively.Obtained results demonstrate that the proposed model minimizes the energy supply cost by considering the stochastic time of use(STOU)loads,EV,ESS,and PV system.Based on the results,the proposed model markedly reduced the electricity costs of the smart house.展开更多
In the framework of liberalized deregulated electricity market, dynamic competitive environment exists between wholesale and retail dealers for energy supplying and management. Smart Grids topology in form of energy m...In the framework of liberalized deregulated electricity market, dynamic competitive environment exists between wholesale and retail dealers for energy supplying and management. Smart Grids topology in form of energy management has forced power supplying agencies to become globally competitive. Demand Response (DR) Programs in context with smart energy network have influenced prosumers and consumers towards it. In this paper Fair Emergency Demand Response Program (FEDRP) is integrated for managing the loads intelligently by using the platform of Smart Grids for Residential Setup. The paper also provides detailed modeling and analysis of respective demands of residential consumers in relation with economic load model for FEDRP. Due to increased customer’s partaking in this program the load on the utility is reduced and managed intelligently during emergency hours by providing fair and attractive incentives to residential clients, thus shifting peak load to off peak hours. The numerical and graphical results are matched for intelligent energy management scenario.展开更多
Essentially, the supply-side reform will also play a very important role in China's future economic development. The supply-side reform can adjust the industrial structures to solve a series of problems in China...Essentially, the supply-side reform will also play a very important role in China's future economic development. The supply-side reform can adjust the industrial structures to solve a series of problems in China's economy, such as the process mismatch. If we actively use the advantages of the supply-side reform in the management accounting, then enterprises can further optimize and improve the management accounting system and the related information systems on the basis of improving the value increment of enterprises.展开更多
Among the fast growing states in the USA,the States of Washington and Oregon have enacted legislative land use and transportation concurrency/balancing planning policies for orderly urban growth management since 1990 ...Among the fast growing states in the USA,the States of Washington and Oregon have enacted legislative land use and transportation concurrency/balancing planning policies for orderly urban growth management since 1990 and 1991,respectively.Regional or urban travel demand forecasting models play an instrumental role in implementing the Washington GMA(Growth Management Act)and the Oregon TPR(Transportation Planning Rule).Both program-and project-level modeling approaches to urban land use/transportation system management are evaluated through the selected cities in Washington and Oregon.展开更多
文摘Utilities around the world have been considering Demand Side Management (DSM) in their strategic planning. The costs of constructing and operating a new capacity generation unit are increasing everyday as well as Transmission and distribution and land issues for new generation plants, which force the utilities to search for another alternatives without any additional constraints on customers comfort level or quality of delivered product. De can be defined as the selection, planning, and implementation of measures intended to have an influence on the demand or customer-side of the electric meter, either caused directly or stimulated indirectly by the utility. DSM programs are peak clipping, Valley filling, Load shifting, Load building, energy conservation and flexible load shape. The main Target of this paper is to show the relation between DSM and Load Forecasting. Moreover, it highlights on the effect of applying DSM on Forecasted demands and how this affects the planning strategies for utility companies. This target will be clearly illustrated through applying the developed algorithm in this paper on an existing residential compound in Cairo-Egypt.
文摘Microgrids are a type of restricted power distribution systems in which electricity is generated,transmitted,and distributed within a small geographic region.They are used to ensure that renewable energy sources are used to their full potential.Microgrids provide further benefits,such as lowering transmission losses and the expenses associated with them.This research compares and contrasts the aims of economic dispatch,emission dispatch,fractional programing based combined economic emission dispatch,and environmental restricted economic dispatch(ECED).A low-voltage microgrid system is investigated for three different scenarios.As a study optimization tool,an innovative,resilient,and strong hybrid swarm-intelligence optimization algorithm is utilised,which is based on combining the properties of the traditional grey-wolf optimiser,sine-cosine algorithm,and crow search algorithm.The employment of a time-of-use energy mar-ket pricing approach instead of a fixed pricing plan resulted in a 15%decrease in gen-eration costs throughout the course of the research.When ECED was assessed with a 15%-20%demand side management based restructured load demand model for the microgrid system,the generation costs were reduced even further.
基金This work was supported in part by the National Natural Science Foundation of China(61922076,61725304,61873252,61991403,61991400)in part by the Australian Research Council Discovery Program(DP200101199).
文摘This paper studies price-based residential demand response management(PB-RDRM)in smart grids,in which non-dispatchable and dispatchable loads(including general loads and plug-in electric vehicles(PEVs))are both involved.The PB-RDRM is composed of a bi-level optimization problem,in which the upper-level dynamic retail pricing problem aims to maximize the profit of a utility company(UC)by selecting optimal retail prices(RPs),while the lower-level demand response(DR)problem expects to minimize the comprehensive cost of loads by coordinating their energy consumption behavior.The challenges here are mainly two-fold:1)the uncertainty of energy consumption and RPs;2)the flexible PEVs’temporally coupled constraints,which make it impossible to directly develop a model-based optimization algorithm to solve the PB-RDRM.To address these challenges,we first model the dynamic retail pricing problem as a Markovian decision process(MDP),and then employ a model-free reinforcement learning(RL)algorithm to learn the optimal dynamic RPs of UC according to the loads’responses.Our proposed RL-based DR algorithm is benchmarked against two model-based optimization approaches(i.e.,distributed dual decomposition-based(DDB)method and distributed primal-dual interior(PDI)-based method),which require exact load and electricity price models.The comparison results show that,compared with the benchmark solutions,our proposed algorithm can not only adaptively decide the RPs through on-line learning processes,but also achieve larger social welfare within an unknown electricity market environment.
基金supported by the Ministry of Science,Research and Arts(MWK)of Baden-Württemberg,Germany,as part of a Ph.D.scholarship
文摘The building sector and its heating and cooling represents one of the major consumer of energy worldwide. Simultaneously, the share of fluctuating generation of renewable energies in the energy mix increases. Therefore storage and demand side management technologies are required. The new adaptive and predictive control algorithm for thermally activated building systems (TABS) based on multiple linear regression (AMLR) presented in this paper enables the application of demand side management (DSM) strategies. Based on simulations, different strategies have been compared with each other. By applying the AMLR algorithm, electricity energy cost savings of 38% could be achieved compared to the conventional control strategy for TABS, while increasing the thermal comfort. At the same time, thermal energy demand can be reduced in the range between 4% to 8%, and pump operation time from 86% to 89%.
文摘In the framework of liberalized deregulated electricity market, dynamic competitive environment exists between wholesale and retail dealers for energy supplying and management. Smart Grids topology in form of energy management has forced power supplying agencies to become globally competitive. Demand Response (DR) Programs in context with smart energy network have influenced prosumers and consumers towards it. In this paper Fair Emergency Demand Response Program (FEDRP) is integrated for managing the loads intelligently by using the platform of Smart Grids for Residential Setup. The paper also provides detailed modelling and analysis of respective demands of residential consumers in relation with economic load model for FEDRP. Due to increased customer’s partaking in this program the load on the utility is reduced and managed intelligently during emergency hours by providing fair and attractive incentives to residential clients, thus shifting peak load to off peak hours. The numerical and graphical results are matched for intelligent load management scenario.
文摘In this paper, an autonomous and distributive demand-side management based on Bayesian game theory is developed and applied among users in a grid connected micro-grid with storage. To derive that strategy, an energy consumption of shiftable loads belonging to a given user is modelled as a noncooperative three-player game of incomplete information, in which each user plays against the storage unit and an opponent gathering all the other users in the micro-grid. Each player is assumed to be endowed with statistical information about its behavior and that of its opponents so that he can take actions maximizing his expected utility. Results of the proposed strategy evaluated by simulating, under MATLAB environment, a connected micro-grid with storage device evidence its efficacy when employed to manage the charging of electric vehicles.
基金supported in part by the National Science Foundation of China (61973247, 61673315, 62173268)the Key Research and Development Program of Shaanxi (2022GY-033)+2 种基金the Nationa Postdoctoral Innovative Talents Support Program of China (BX20200272)the Key Program of the National Natural Science Foundation of China (61833015)the Fundamental Research Funds for the Central Universities (xzy022021050)。
文摘The smart grid utilizes the demand side management technology to motivate energy users towards cutting demand during peak power consumption periods, which greatly improves the operation efficiency of the power grid. However, as the number of energy users participating in the smart grid continues to increase, the demand side management strategy of individual agent is greatly affected by the dynamic strategies of other agents. In addition, the existing demand side management methods, which need to obtain users’ power consumption information,seriously threaten the users’ privacy. To address the dynamic issue in the multi-microgrid demand side management model, a novel multi-agent reinforcement learning method based on centralized training and decentralized execution paradigm is presented to mitigate the damage of training performance caused by the instability of training experience. In order to protect users’ privacy, we design a neural network with fixed parameters as the encryptor to transform the users’ energy consumption information from low-dimensional to high-dimensional and theoretically prove that the proposed encryptor-based privacy preserving method will not affect the convergence property of the reinforcement learning algorithm. We verify the effectiveness of the proposed demand side management scheme with the real-world energy consumption data of Xi’an, Shaanxi, China. Simulation results show that the proposed method can effectively improve users’ satisfaction while reducing the bill payment compared with traditional reinforcement learning(RL) methods(i.e., deep Q learning(DQN), deep deterministic policy gradient(DDPG),QMIX and multi-agent deep deterministic policy gradient(MADDPG)). The results also demonstrate that the proposed privacy protection scheme can effectively protect users’ privacy while ensuring the performance of the algorithm.
文摘The introduction of new kinds of energy mixes to the electricity grid is a challenging environmental task for present and future generations as they fight the pollution and global warming issues associated with urbanization. Individual appliances and whole buildings that continuously incorporate local intelligence which originates from the new technologies of Internet of Things are the new infrastructure that this integration is based on. Smart Electricity Grids are becoming more intensively integrated with tertiary building energy management systems and distributed energy generators such as wind and solar. This new smart network type harnesses the loT (lnternet of Things) principles by generating a new network made of active elements combined with the necessary control and distributed coordination mechanisms. This new self-organized overlay network of connected DER (distributed energy resources) allows for the seamless management and control of the active grid as well as the efficient coordination and exploration of single and aggregated technical prosumer potential (generation and consumption) to participate in energy balancing and other distributed grid related services, applying energy management strategies based on control and predict of the DERs behavior for facing demand side management issues.
文摘Recent estimates state that the European Union is on course to achieve only half of the 20% energy consumption reduction target by 2020. As the first governmental stakeholders involved in the implementation of energy saving initiatives, municipalities play a strategic role in the energy planning process. This paper focuses on establishment of an energy planning methodology for small municipalities with numbers of inhabitants in range of 1,000-10,000 which often face common problems associated with low efficient district heat supply systems and decreasing energy consumption in buildings. Particular attention is paid to DSM (demand side management) activities. DSM scheme includes legislative and financial flows with small investments from municipality side. Based on increased information and motivation it promotes reduction of energy consumption in all kinds of buildings. Practical experience has shown that application of DSM measures allows achieving 20% energy savings in municipal buildings during the first year.
文摘In view of the problem that the requirements of travel demand management and traffic policy-sensitivity are ignored during the establishment process of the travel demand forecasting model, a discrete-choice-based travel demand forecasting model is proposed to demonstrate its applicability to travel demand management. A car-bus discrete choice model is established, including three variables, i. e,, individual socioeconomic characteristics, time, and cost, and the traffic policy-sensitivity is evaluated through two kinds of traffic policies: parking charges and bus priorities. The empirical results show that travel choice is insensitive to the policy of parking charges as 88. 41% of the travelers are insensitive to parking charges; travel choice is, however, sensitive to the policy of bus priorities as 67.70% of the car travelers and 77.02% of the bus travelers are sensitive to bus priorities. The discrete-choice-based travel demand forecasting model is quite policy-sensitive and also has a good adaptability for travel demand management when meeting the basic functions of the demand forecasting model.
基金Supported by National Natural Science Foundation of China(Grant No.61272428)PhD Programs Foundation of Ministry of Education of China(Grant No.20120002110067)
文摘Cyber physical systems(CPS) recently emerge as a new technology which can provide promising approaches to demand side management(DSM), an important capability in industrial power systems. Meanwhile, the manufacturing center is a typical industrial power subsystem with dozens of high energy consumption devices which have complex physical dynamics. DSM, integrated with CPS, is an effective methodology for solving energy optimization problems in manufacturing center. This paper presents a prediction-based manufacturing center self-adaptive energy optimization method for demand side management in cyber physical systems. To gain prior knowledge of DSM operating results, a sparse Bayesian learning based componential forecasting method is introduced to predict 24-hour electric load levels for specific industrial areas in China. From this data, a pricing strategy is designed based on short-term load forecasting results. To minimize total energy costs while guaranteeing manufacturing center service quality, an adaptive demand side energy optimization algorithm is presented. The proposed scheme is tested in a machining center energy optimization experiment. An AMI sensing system is then used to measure the demand side energy consumption of the manufacturing center. Based on the data collected from the sensing system, the load prediction-based energy optimization scheme is implemented. By employing both the PSO and the CPSO method, the problem of DSM in the manufac^ring center is solved. The results of the experiment show the self-adaptive CPSO energy optimization method enhances optimization by 5% compared with the traditional PSO optimization method.
文摘Jordan is located in the Middle East in the eastern Mediterranean. It has a surface area of approximately 90,000 km2 and its population reaches 6.3 million. Jordan is the fourth driest countries in the World and water demand exceeds Jordan’s available water resources. Annual per capita water availability has declined from 3600 m3/year in 1946 to 145 m3/year today. It is estimated that the population will continue to grow from about 5.87 million in 2008 to over 7.80 million by 2022. Total projected water demand will be 1673 million cubic meters by 2022. Fifteen-year complete records for water consumption were studied to see the supply and demand variation with time. It had been noticed that water demand management will address the actual needs for water. This management program will ensure further reduction in water use, reduce water loses through the distribution supply net, prevent pollution. In addition, it will help minimize water disposal in nature, make efficient use of available water resources, plan for future new water resources prudently and finally impose a real cost for water supply that would be acceptable. In addition to the above, public awareness program is to be put in action. Such a program should be used in schools as well as the media. The public is to be aware of the problem and how they can assist with overcoming the water shortage crisis.
文摘Most current Travel Demand Management(TDM)programs such as vanpooling,ridesharing,or transit focus on managing travel demand of specific groups of commuters but are limited in effectively managing demand for automobile drivers,who are unable or unwilling to participate in such programs.This paper highlights results from a pilot field study conducted in a large west coast city experiencing major traffic congestion,and documents results of the use of an incentive-based active demand management(ADM)system focusing on automobile commuters.The system,called“Metropia,”predicts future traffic conditions,applies a proprietary routing algorithm to find time-dependent shortest paths for different departure times,and,based on user request,provides automobile travelers with multiple departure times and route choices.Each of these travel choices are assigned points values,with higher points(and thus more valuable rewards)available for travelling during off-peak times and less congested routes,and lower points available for peak traffic travel times.The goal of this ADM system is to improve traffic flow and commuter travel times citywide,alleviating heavily congested areas without the use of new roadway construction by incentivizing travelers to change their travel behavior and avoid traffic congestion.The level of rewards points available to users(commuters)by the system depends on the travelers’behavioral change degree and their contributions to traffic congestion alleviation.This system was implemented in Los Angeles,Calif.,USA,as a small scale pilot field study carried out beginning April 2013 and lasting for 10 weeks.Results from this field study show the system is able to accurately predict travel time with Relative Mean Absolute Error(RMAE)as low as 15.20%.Significant travel behavior changes were observed which validate the concept of using incentives to influence people’s travel behavior.Furthermore,field study results show 20%travel time can be saved for people who changed their travel behavior.
文摘The aim of this paper is to assess the importance of Water Demand Management (WDM) strategy to the improvement of water supply and sanitation in Nigeria. Persistent water supply shortages and poor sanitation have since remained important features of the Nigerian urban and rural communities. Most often governmental solution to these problems has been to develop and exploit the available water resources and the level of sanitation for the people. This predominant approach which is also known as augmentation method is supply driven with the primary purpose being how best to meet the perceived water and sanitation demand. One of the major disadvantages of this approach is the huge financial involvement associated with it. Conversely, quite recently water resource managers have begun to direct attention on how consumers can be motivated to regulate the amount and manner in which they use and dispose water to alleviate pressure on freshwater supplies. This new approach is known as water demand management. It is demand driven in that consumers determine their own water need. Employment of WDM by consumers especially in water scarce areas as was discussed in the paper will decrease the amount of water use, thereby limiting unnecessary financial expenditure in exploiting new sources to meet the ever increasing demand.
基金The Key Project of the National Ninth-Five-Year Plan No. 96-004-02-09The 48Project of Ministry of Water Resources No. 985106The Project of Chinese Academy of Sciences
文摘Through the study of mutual process between groundwater systems and eco-environmental water demand, the eco-environmental water demand is brought into groundwater systems model as the important water consumption item and unification of groundwater抯 economic, environmental and ecological functions were taken into account. Based on eco-environmental water demand at Da抋n in Jilin province, a three-dimensional simulation and optimized management model of groundwater systems was established. All water balance components of groundwater systems in 1998 and 1999 were simulated with this model and the best optimal exploitation scheme of groundwater systems in 2000 was determined, so that groundwater resource was efficiently utilized and good economic, ecologic and social benefits were obtained.
文摘The majority of Middle East and North Africa(MENA)countries suffer from chronic imbalance between available water supply and rising water demand.This imbalance is expected to worsen even further in the future as a result of sharp population growth,rapid economic development and climate change,unless major positive measures are implemented to augment water supply and manage water demand.The supply management approach,on its own,practiced by many countries in the region for so many years has so far demonstrated its inability to bridge the“water gap”between available water resources and rising water demand,as most traditional water resourced in almost all MENA countries have been exploited(or over exploited),and the cost of non-traditional water resources has become increasingly prohibitively high,apart from its environmental impact.Demand management is regarded by many water experts in the region as the answer or“panacea”for the water imbalance problem.But,is demand management approach alone able to solve the problem of water scarcity in the MENA region?In other words,if all demand management measures have been fully implemented,would there still be gaps between supply and demand that need to be filled with supply augmentation,andwill supply management options still need to be part of the solution?This paper tries to answer this question by reviewing several works in this domain,particularly,recent studies by the World Bank[9-11].It was concluded that,although water demand management measures should be given the first priority,especially,in the agricultural sector where it has the maximum impact,demand management on its own will not be able to bridge the“water gap”,and supply management options,such as sea water desalination and the re-use of treated wastewater,will be part of the solution.
文摘Buildings are the main energy consumers across the world,especially in urban communities.Building smartization,or the smartification of housing,therefore,is a major step towards energy grid smartization too.By controlling the energy consumption of lighting,heating,and cooling systems,energy consumption can be optimized.All or some part of the energy consumed in future smart buildings must be supplied by renewable energy sources(RES),which mitigates environmental impacts and reduces peak demand for electrical energy.In this paper,a new optimization algorithm is applied to solve the optimal energy consumption problem by considering the electric vehicles and demand response in smart homes.In this way,large power stations that work with fossil fuels will no longer be developed.The current study modeled and evaluated the performance of a smart house in the presence of electric vehicles(EVs)with bidirectional power exchangeability with the power grid,an energy storage system(ESS),and solar panels.Additionally,the solar RES and ESS for predicting solar-generated power prediction uncertainty have been considered in this work.Different case studies,including the sales of electrical energy resulting from PV panels’generated power to the power grid,time-variable loads such as washing machines,and different demand response(DR)strategies based on energy price variations were taken into account to assess the economic and technical effects of EVs,BESS,and solar panels.The proposed model was simulated in MATLAB.A hybrid particle swarm optimization(PSO)and gravitational search(GS)algorithm were utilized for optimization.Scenario generation and reduction were performed via LHS and backward methods,respectively.Obtained results demonstrate that the proposed model minimizes the energy supply cost by considering the stochastic time of use(STOU)loads,EV,ESS,and PV system.Based on the results,the proposed model markedly reduced the electricity costs of the smart house.
文摘In the framework of liberalized deregulated electricity market, dynamic competitive environment exists between wholesale and retail dealers for energy supplying and management. Smart Grids topology in form of energy management has forced power supplying agencies to become globally competitive. Demand Response (DR) Programs in context with smart energy network have influenced prosumers and consumers towards it. In this paper Fair Emergency Demand Response Program (FEDRP) is integrated for managing the loads intelligently by using the platform of Smart Grids for Residential Setup. The paper also provides detailed modeling and analysis of respective demands of residential consumers in relation with economic load model for FEDRP. Due to increased customer’s partaking in this program the load on the utility is reduced and managed intelligently during emergency hours by providing fair and attractive incentives to residential clients, thus shifting peak load to off peak hours. The numerical and graphical results are matched for intelligent energy management scenario.
文摘Essentially, the supply-side reform will also play a very important role in China's future economic development. The supply-side reform can adjust the industrial structures to solve a series of problems in China's economy, such as the process mismatch. If we actively use the advantages of the supply-side reform in the management accounting, then enterprises can further optimize and improve the management accounting system and the related information systems on the basis of improving the value increment of enterprises.
文摘Among the fast growing states in the USA,the States of Washington and Oregon have enacted legislative land use and transportation concurrency/balancing planning policies for orderly urban growth management since 1990 and 1991,respectively.Regional or urban travel demand forecasting models play an instrumental role in implementing the Washington GMA(Growth Management Act)and the Oregon TPR(Transportation Planning Rule).Both program-and project-level modeling approaches to urban land use/transportation system management are evaluated through the selected cities in Washington and Oregon.