Pile group foundation and caisson foundation are two common foundation schemes of long-span bridges, and the seismic performances of the two kinds of foundations are different. Taking Taizhou Bridge as an example, whi...Pile group foundation and caisson foundation are two common foundation schemes of long-span bridges, and the seismic performances of the two kinds of foundations are different. Taking Taizhou Bridge as an example, which is the first kilometer level three-pylon two-span suspension bridge in the world, two foundation schemes are designed for the middle pylon, and two whole bridge models with two different foundation schemes of the middle pylon are established respectively in this paper. The effects of foundation-soil interaction are simulated by equivalent linear soil springs whose stiffnesses are calculated according to m method. Seismic capacity/demand ratios of the two models are calculated. The following conclusions can be drawn: the weak positions of the two schemes are not the same; if caisson foundation is adopted for the middle pylon, the weak position is the bearing capacity of the middle pylon foundation, while if pile group foundation is adopted for the middle pylon, the weak position is the bearing capacity of the side pylon foundation.展开更多
本文基于美国陆军工程师兵团EM 1110-2-6053中提出的水工建筑物抗震性能需求能力比(DCR,demand to capacity ratio)评价方法,对某水电站沉砂池综合抗震性能进行了评价。结果表明,在OBE下,沉砂池右边墙的抗剪性能、抗弯性能、抗滑动稳定...本文基于美国陆军工程师兵团EM 1110-2-6053中提出的水工建筑物抗震性能需求能力比(DCR,demand to capacity ratio)评价方法,对某水电站沉砂池综合抗震性能进行了评价。结果表明,在OBE下,沉砂池右边墙的抗剪性能、抗弯性能、抗滑动稳定和抗倾覆稳定性均能满足设计要求。而在MDE下,尽管沉砂池截面抗弯性能良好,但其右边墙的抗剪性能难以满足设计要求,需要对结构断面或配筋进行调整;且其可能发生滑动失稳和倾覆失稳破坏,需要进一步开展非线性动力分析。展开更多
基金National Science and Technology Support Program of China(No.2009BAG15B01)Key Programs for Science and Technology Development of Chinese Transportation Industry(No.2008-353-332-190)+1 种基金the Ministry of Science and Technology of China(No.SLDRCE 08-B-04)the Fundamental Research Funds for the Central Universities and Kwang-Hua Fund for College of Civil Engineering of Tongji University
文摘Pile group foundation and caisson foundation are two common foundation schemes of long-span bridges, and the seismic performances of the two kinds of foundations are different. Taking Taizhou Bridge as an example, which is the first kilometer level three-pylon two-span suspension bridge in the world, two foundation schemes are designed for the middle pylon, and two whole bridge models with two different foundation schemes of the middle pylon are established respectively in this paper. The effects of foundation-soil interaction are simulated by equivalent linear soil springs whose stiffnesses are calculated according to m method. Seismic capacity/demand ratios of the two models are calculated. The following conclusions can be drawn: the weak positions of the two schemes are not the same; if caisson foundation is adopted for the middle pylon, the weak position is the bearing capacity of the middle pylon foundation, while if pile group foundation is adopted for the middle pylon, the weak position is the bearing capacity of the side pylon foundation.
文摘本文基于美国陆军工程师兵团EM 1110-2-6053中提出的水工建筑物抗震性能需求能力比(DCR,demand to capacity ratio)评价方法,对某水电站沉砂池综合抗震性能进行了评价。结果表明,在OBE下,沉砂池右边墙的抗剪性能、抗弯性能、抗滑动稳定和抗倾覆稳定性均能满足设计要求。而在MDE下,尽管沉砂池截面抗弯性能良好,但其右边墙的抗剪性能难以满足设计要求,需要对结构断面或配筋进行调整;且其可能发生滑动失稳和倾覆失稳破坏,需要进一步开展非线性动力分析。