A future smart grid must fulfill the vision of the Energy Internet in which millions of people produce their own energy from renewables in their homes, offices, and factories and share it with each other. Electric veh...A future smart grid must fulfill the vision of the Energy Internet in which millions of people produce their own energy from renewables in their homes, offices, and factories and share it with each other. Electric vehicles and local energy storage will be widely deployed. Internet technology will be utilized to transform the power grid into an energysharing inter-grid. To prepare for the future, a smart grid with intelligent periphery, or smart GRIP, is proposed. The building blocks of GRIP architecture are called clusters and include an energy-management system (EMS)-controlled transmission grid in the core and distribution grids, micro-grids, and smart buildings and homes on the periphery; all of which are hierarchically structured. The layered architecture of GRIP allows a seamless transition from the present to the future and plug-and-play interoperability. The basic functions of a cluster consist of (1) dispatch, (2) smoothing, and (3) mitigation. A risk-limiting dispatch methodology is presented; a new device, called the electric spring, is developed for smoothing out fluctuations in periphery clusters; and means to mitigate failures are discussed.展开更多
Distributed renewable energy sources offer significant alternatives for Qatar and the Arab Gulf region’s future fuel supply and demand.Microgrids are essential for providing dependable power in difficult-to-reach are...Distributed renewable energy sources offer significant alternatives for Qatar and the Arab Gulf region’s future fuel supply and demand.Microgrids are essential for providing dependable power in difficult-to-reach areas while incorporating significant amounts of renewable energy sources.In energy-efficient data centers,distributed generation can be used to meet the facility’s overall power needs.This study primarily focuses on the best energy management practices for a smart microgrid in Qatar while taking demandside load management into account.This article looked into a university microgrid in Qatar that primarily aimed to get all of its energy from the grid.While diesel generators are categorized as a dispatchable distributed generation with energy storage added to handle solar radiation from the sun and high grid power operating costs in the suggested scenario,wind turbines and solar Photovoltaic(PV)are classified as non-dispatchable distributed generators.The resulting linear math issues are assessed and displayed in MATLAB optimization software using a mixed-integer linear programming(MILP)strategy.According to the simulation results,the suggested energy management strategy reduced the university microgrid’s grid power costs by 38.8%,making it an affordable solution which is somehow greater than the prior case scenario’s 23%savings.The installed solar system capacity’s effects on the economy,society,and finances were also assessed,and it became clear that the best option for the smart microgrid was determined that would be 325 kW of solar PV,25 kW of wind turbine,and 600 kW of diesel generators,respectively.Given the current situation,university administrators are urged to participate in distributed generators and adopt cutting-edge designs for energy storage technologies due to the significant environmental and financial benefits.展开更多
基金sponsored by National Key Basic Research Program of China (973 Program) (2012CB215102) for WuUS National Science Foundation Award (1135872) for VaraiyaHong Kong RGC Theme-based Research Project (T23-701/14-N) for Hui
文摘A future smart grid must fulfill the vision of the Energy Internet in which millions of people produce their own energy from renewables in their homes, offices, and factories and share it with each other. Electric vehicles and local energy storage will be widely deployed. Internet technology will be utilized to transform the power grid into an energysharing inter-grid. To prepare for the future, a smart grid with intelligent periphery, or smart GRIP, is proposed. The building blocks of GRIP architecture are called clusters and include an energy-management system (EMS)-controlled transmission grid in the core and distribution grids, micro-grids, and smart buildings and homes on the periphery; all of which are hierarchically structured. The layered architecture of GRIP allows a seamless transition from the present to the future and plug-and-play interoperability. The basic functions of a cluster consist of (1) dispatch, (2) smoothing, and (3) mitigation. A risk-limiting dispatch methodology is presented; a new device, called the electric spring, is developed for smoothing out fluctuations in periphery clusters; and means to mitigate failures are discussed.
文摘Distributed renewable energy sources offer significant alternatives for Qatar and the Arab Gulf region’s future fuel supply and demand.Microgrids are essential for providing dependable power in difficult-to-reach areas while incorporating significant amounts of renewable energy sources.In energy-efficient data centers,distributed generation can be used to meet the facility’s overall power needs.This study primarily focuses on the best energy management practices for a smart microgrid in Qatar while taking demandside load management into account.This article looked into a university microgrid in Qatar that primarily aimed to get all of its energy from the grid.While diesel generators are categorized as a dispatchable distributed generation with energy storage added to handle solar radiation from the sun and high grid power operating costs in the suggested scenario,wind turbines and solar Photovoltaic(PV)are classified as non-dispatchable distributed generators.The resulting linear math issues are assessed and displayed in MATLAB optimization software using a mixed-integer linear programming(MILP)strategy.According to the simulation results,the suggested energy management strategy reduced the university microgrid’s grid power costs by 38.8%,making it an affordable solution which is somehow greater than the prior case scenario’s 23%savings.The installed solar system capacity’s effects on the economy,society,and finances were also assessed,and it became clear that the best option for the smart microgrid was determined that would be 325 kW of solar PV,25 kW of wind turbine,and 600 kW of diesel generators,respectively.Given the current situation,university administrators are urged to participate in distributed generators and adopt cutting-edge designs for energy storage technologies due to the significant environmental and financial benefits.