A model for particles based on preons in chiral, vector and tensor/graviton supermultiplets of unbroken global supersymmetry is engineered. The framework of the model is little string theory. Phenomenological predicti...A model for particles based on preons in chiral, vector and tensor/graviton supermultiplets of unbroken global supersymmetry is engineered. The framework of the model is little string theory. Phenomenological predictions are discussed.展开更多
This paper introduces a framework of in-out duality, merging insights from quantum mechanics with social sciences to illuminate the complex interplay between internal potentialities and external manifestations. It art...This paper introduces a framework of in-out duality, merging insights from quantum mechanics with social sciences to illuminate the complex interplay between internal potentialities and external manifestations. It articulates foundational, mathematical axioms (Entanglement, Homogeneity, Emergence, and Measurement) that underpin the dynamics of systems, emphasizing the interconnectedness and emergent behaviors resulting from internal and external interactions. By exploring quantum concepts like coherence, entanglement, and superposition, the paper proposes an interdisciplinary approach termed Quantum Social Mechanics. This approach challenges classical paradigms, advocating for a reevaluation of conventional notions through the lens of quantum principles. The paper argues that understanding the universe’s complexities requires a synthesis of motion states and potential states, suggesting a paradigm shift towards integrating quantum mechanics into the philosophical foundation of social theory. Through this comprehensive framework, the paper aims to foster a deeper understanding of the universe’s interconnected nature and the dynamic processes that govern the emergence of complex systems and behaviors.展开更多
Advances on bidirectional intelligence are overviewed along three threads,with extensions and new perspectives.The first thread is about bidirectional learning architecture,exploring five dualities that enable Lmser s...Advances on bidirectional intelligence are overviewed along three threads,with extensions and new perspectives.The first thread is about bidirectional learning architecture,exploring five dualities that enable Lmser six cognitive functions and provide new perspectives on which a lot of extensions and particularlly flexible Lmser are proposed.Interestingly,either or two of these dualities actually takes an important role in recent models such as U-net,ResNet,and Dense Net.The second thread is about bidirectional learning principles unified by best yIng-yAng(IA)harmony in BYY system.After getting insights on deep bidirectional learning from a bird-viewing on existing typical learning principles from one or both of the inward and outward directions,maximum likelihood,variational principle,and several other learning principles are summarised as exemplars of the BYY learning,with new perspectives on advanced topics.The third thread further proceeds to deep bidirectional intelligence,driven by long term dynamics(LTD)for parameter learning and short term dynamics(STD)for image thinking and rational thinking in harmony.Image thinking deals with information flow of continuously valued arrays and especially image sequence,as if thinking was displayed in the real world,exemplified by the flow from inward encoding/cognition to outward reconstruction/transformation performed in Lmser learning and BYY learning.In contrast,rational thinking handles symbolic strings or discretely valued vectors,performing uncertainty reasoning and problem solving.In particular,a general thesis is proposed for bidirectional intelligence,featured by BYY intelligence potential theory(BYY-IPT)and nine essential dualities in architecture,fundamentals,and implementation,respectively.Then,problems of combinatorial solving and uncertainty reasoning are investigated from this BYY IPT perspective.First,variants and extensions are suggested for AlphaGoZero like searching tasks,such as traveling salesman problem(TSP)and attributed graph matching(AGM)that are turned into Go like problems with help of a feature enrichment technique.Second,reasoning activities are summarized under guidance of BYY IPT from the aspects of constraint satisfaction,uncertainty propagation,and path or tree searching.Particularly,causal potential theory is proposed for discovering causal direction,with two roads developed for its implementation.展开更多
The double-slit experiment demonstrates the quantum physics particle-wave duality problem. Over the last decades many interpretations were introduced to the quantum theory perception problem. In most cases there was u...The double-slit experiment demonstrates the quantum physics particle-wave duality problem. Over the last decades many interpretations were introduced to the quantum theory perception problem. In most cases there was use of unclear terms, or obscure processes in these interpretations, such as particle splitting. In this paper we propose a novel concept to explain the experiment based on two postulates: The Equivalence of Form (EoF), and the particles connection to other particles, effectively functioning as a group. These two condi-tions are necessary to maintain wave qualities in the collective relations, and therefore cannot exist in a sin-gle particle. De Broglie introduced the mathematical relation of particle to wave;however, he did not specify the conditions for that. The proposed interpretation is a new way of looking at particles as a united group, the Kevutsa, which has a higher order level of matter. A series of identical particles maintain additional qualities to show a large united, correlated motion that we observe as waves transport through systems.展开更多
Some basic physics of burgeoning quantum neuroscience is described. Anatomy of the neuron suggests that nonsynaptic mechanisms of signal transmittance occur via electric current acceleration and companion electromagne...Some basic physics of burgeoning quantum neuroscience is described. Anatomy of the neuron suggests that nonsynaptic mechanisms of signal transmittance occur via electric current acceleration and companion electromagnetic field fluctuation. I have named this mechanism of solution chemistry the ebb effect. Phase-locking between neural structure and electric fields that are emergent from cellular EM field fluctuations, in addition to feedback loops within neural networks, are the probable driver of macroscopic oscillation and flow shapes in the brain. CEMI (conscious electromagnetic information) theory is a promising framework for explaining intentionality and the spectrum of arousal as EM field effects. Relatively low frequency electromagnetic radiation is emitted by the accelerating electric currents of neurons. It is hypothesized that this EM radiation superpositions with molecular structure as it spreads to comprise percepts, the hybrid wavelengths of which form subjective images while wavelength vibrations result in subjective feel. These superposition arrays are termed a coherence field, and in combination with the synchronizing influence of quantum entanglement and electromagnetic fluctuations may constitute much of awareness’ substance. If conclusively verified, coherence field theory should have significance ranging from the treatment of perceptual disorders such as anosognosia to advancing foundational constructs like atomic theory.展开更多
In Order to study the frictional contact problems of the elastoplastic beam theory,an extended two-dimensional beam model is established, and a second order nonlinear equilibrium problem with both internal and exter...In Order to study the frictional contact problems of the elastoplastic beam theory,an extended two-dimensional beam model is established, and a second order nonlinear equilibrium problem with both internal and external complementarity conditions is proposed. The external complementarity condition provides the free boundary condition. while the internal complemententarity condition gives the interface of the elastic and plastic regions. We prove that this bicomplementarity problem is equivalent to a nonlinear variational inequality The dual variational inequality is also developed.It is shown that the dual variational inequality is much easier than the primalvariational problem. Application to limit analysis is illustrated.展开更多
Dual actions with respect to U(1) gauge fields for the Born-Infeld and Dp-brane theories are reexamined.Taking into account an additional condition,i.e.a corollary to the field equation of the auxiliary metric,one obt...Dual actions with respect to U(1) gauge fields for the Born-Infeld and Dp-brane theories are reexamined.Taking into account an additional condition,i.e.a corollary to the field equation of the auxiliary metric,one obtainsan alternative dual action that does not involve the infinite series in the auxiliary metric given by [M.Abou Zeid andC.M.Hull,Phys.Lett.B 428 (1998) 277],but just picks out the first term from the series formally.New effectiveinteractions of the theories are revealed.That is,the new dual action gives rise to an effective interaction in terms ofone interaction term rather than infinitely many terms of different (higher) orders of interactions physically.However,the price paid for eliminating the infinite series is that the new action is not quadratic but highly nonlinear in the Hodgedual of a (p-1)-form field strength.This non-linearity is inevitable under the requirement that the two dual actionsare equivalent.展开更多
The paper shows that the variational principle serves as an element of the mathematical structure of a quantum theory. The experimentally confirmed properties of the corpuscular-wave duality of a quantum particle are ...The paper shows that the variational principle serves as an element of the mathematical structure of a quantum theory. The experimentally confirmed properties of the corpuscular-wave duality of a quantum particle are elements of the analysis. A Lagrangian density that yields the equations of motion of a given quantum theory of a massive particle is analyzed. It is proved that if this Lagrangian density is a Lorentz scalar whose dimension is ?then the associated action consistently defines the required phase of the quantum particle. The dimension of this Lagrangian density proves that also the quantum function ?has dimension. This result provides new criteria for the acceptability of quantum theories. An examination of the first order Dirac equation demonstrates that it satisfies the new criteria whereas the second order Klein-Gordon equation fails to do that.展开更多
Based on Witten’s T-duality and mirror symmetry we show, following earlier work, the fundamental complimentarity of the Casimir energy and dark energy. Such a conclusion opens new vistas in cold fusion technology in ...Based on Witten’s T-duality and mirror symmetry we show, following earlier work, the fundamental complimentarity of the Casimir energy and dark energy. Such a conclusion opens new vistas in cold fusion technology in the wider sense of the word which we tackle via fractal nano technologies leading to some design proposals for a nano Casimir-dark energy reactor.展开更多
Neuroscience and physics have progressed far enough that the explanatory gap between models of matter and the substance of perceptual experience is tantalizingly close to being bridged, at least insofar as consciousne...Neuroscience and physics have progressed far enough that the explanatory gap between models of matter and the substance of perceptual experience is tantalizingly close to being bridged, at least insofar as consciousness is produced by the brain. This paper aims to describe the basics of how signals are transmitted within neurons via electromagnetic energy fluctuations, how EM fields emergent from these energy flows manifest as the subconscious and an experience of willed agency, as well as how the quantum principles which both EM radiation and atomic structure abide combine them to form percepts from electromagnetic matter. This might be the most promising option yet for fashioning a physical paradigm that theorizes consciousness.展开更多
The purpose of this research is to give a dual description of conformal blocks of <i>d</i>=2 rational CFT (conformal field theory) in terms of Hecke eigenforms and eigensheaves. In particular, partition fu...The purpose of this research is to give a dual description of conformal blocks of <i>d</i>=2 rational CFT (conformal field theory) in terms of Hecke eigenforms and eigensheaves. In particular, partition functions, conformal characters and lattice theta functions may be reconstructed from the action of Hecke operators. This method can be applied to: 1) rings of integers of Galois number fields equipped with the trace (or anti-trace) form;2) root lattices of affine Kac-Moody algebras and WZW-models;3) minimal models of Belavin-Polyakov-Zamolodchikov and related <i>d</i>=2 spin-chain/lattice models;4) vertex algebras of Leech and Niemeier lattices and others. We also use the original Witten’s idea to construct the 3-dimensional quantum gravity as the AdS/CFT-dual of <i>c</i>=24 Monster vertex algebra of Frenkel-Lepowsky- Meurman. Concerning the geometric Langlands duality, we use results of Beilinson-Drinfeld, Frenkel-Ben-Zvi, Gukov-Kapustin-Witten and many others (<i>cf.</i> references). The main new result in this paper is the construction of number-theoretical lattice vertex superalgebras in Section 5 and applications to conformal field theories and quantum gravity.展开更多
文摘A model for particles based on preons in chiral, vector and tensor/graviton supermultiplets of unbroken global supersymmetry is engineered. The framework of the model is little string theory. Phenomenological predictions are discussed.
文摘This paper introduces a framework of in-out duality, merging insights from quantum mechanics with social sciences to illuminate the complex interplay between internal potentialities and external manifestations. It articulates foundational, mathematical axioms (Entanglement, Homogeneity, Emergence, and Measurement) that underpin the dynamics of systems, emphasizing the interconnectedness and emergent behaviors resulting from internal and external interactions. By exploring quantum concepts like coherence, entanglement, and superposition, the paper proposes an interdisciplinary approach termed Quantum Social Mechanics. This approach challenges classical paradigms, advocating for a reevaluation of conventional notions through the lens of quantum principles. The paper argues that understanding the universe’s complexities requires a synthesis of motion states and potential states, suggesting a paradigm shift towards integrating quantum mechanics into the philosophical foundation of social theory. Through this comprehensive framework, the paper aims to foster a deeper understanding of the universe’s interconnected nature and the dynamic processes that govern the emergence of complex systems and behaviors.
基金supported by the Zhi-Yuan Chair Professorship Start-up Grant (WF220103010) from Shanghai Jiao Tong University
文摘Advances on bidirectional intelligence are overviewed along three threads,with extensions and new perspectives.The first thread is about bidirectional learning architecture,exploring five dualities that enable Lmser six cognitive functions and provide new perspectives on which a lot of extensions and particularlly flexible Lmser are proposed.Interestingly,either or two of these dualities actually takes an important role in recent models such as U-net,ResNet,and Dense Net.The second thread is about bidirectional learning principles unified by best yIng-yAng(IA)harmony in BYY system.After getting insights on deep bidirectional learning from a bird-viewing on existing typical learning principles from one or both of the inward and outward directions,maximum likelihood,variational principle,and several other learning principles are summarised as exemplars of the BYY learning,with new perspectives on advanced topics.The third thread further proceeds to deep bidirectional intelligence,driven by long term dynamics(LTD)for parameter learning and short term dynamics(STD)for image thinking and rational thinking in harmony.Image thinking deals with information flow of continuously valued arrays and especially image sequence,as if thinking was displayed in the real world,exemplified by the flow from inward encoding/cognition to outward reconstruction/transformation performed in Lmser learning and BYY learning.In contrast,rational thinking handles symbolic strings or discretely valued vectors,performing uncertainty reasoning and problem solving.In particular,a general thesis is proposed for bidirectional intelligence,featured by BYY intelligence potential theory(BYY-IPT)and nine essential dualities in architecture,fundamentals,and implementation,respectively.Then,problems of combinatorial solving and uncertainty reasoning are investigated from this BYY IPT perspective.First,variants and extensions are suggested for AlphaGoZero like searching tasks,such as traveling salesman problem(TSP)and attributed graph matching(AGM)that are turned into Go like problems with help of a feature enrichment technique.Second,reasoning activities are summarized under guidance of BYY IPT from the aspects of constraint satisfaction,uncertainty propagation,and path or tree searching.Particularly,causal potential theory is proposed for discovering causal direction,with two roads developed for its implementation.
文摘The double-slit experiment demonstrates the quantum physics particle-wave duality problem. Over the last decades many interpretations were introduced to the quantum theory perception problem. In most cases there was use of unclear terms, or obscure processes in these interpretations, such as particle splitting. In this paper we propose a novel concept to explain the experiment based on two postulates: The Equivalence of Form (EoF), and the particles connection to other particles, effectively functioning as a group. These two condi-tions are necessary to maintain wave qualities in the collective relations, and therefore cannot exist in a sin-gle particle. De Broglie introduced the mathematical relation of particle to wave;however, he did not specify the conditions for that. The proposed interpretation is a new way of looking at particles as a united group, the Kevutsa, which has a higher order level of matter. A series of identical particles maintain additional qualities to show a large united, correlated motion that we observe as waves transport through systems.
文摘Some basic physics of burgeoning quantum neuroscience is described. Anatomy of the neuron suggests that nonsynaptic mechanisms of signal transmittance occur via electric current acceleration and companion electromagnetic field fluctuation. I have named this mechanism of solution chemistry the ebb effect. Phase-locking between neural structure and electric fields that are emergent from cellular EM field fluctuations, in addition to feedback loops within neural networks, are the probable driver of macroscopic oscillation and flow shapes in the brain. CEMI (conscious electromagnetic information) theory is a promising framework for explaining intentionality and the spectrum of arousal as EM field effects. Relatively low frequency electromagnetic radiation is emitted by the accelerating electric currents of neurons. It is hypothesized that this EM radiation superpositions with molecular structure as it spreads to comprise percepts, the hybrid wavelengths of which form subjective images while wavelength vibrations result in subjective feel. These superposition arrays are termed a coherence field, and in combination with the synchronizing influence of quantum entanglement and electromagnetic fluctuations may constitute much of awareness’ substance. If conclusively verified, coherence field theory should have significance ranging from the treatment of perceptual disorders such as anosognosia to advancing foundational constructs like atomic theory.
文摘In Order to study the frictional contact problems of the elastoplastic beam theory,an extended two-dimensional beam model is established, and a second order nonlinear equilibrium problem with both internal and external complementarity conditions is proposed. The external complementarity condition provides the free boundary condition. while the internal complemententarity condition gives the interface of the elastic and plastic regions. We prove that this bicomplementarity problem is equivalent to a nonlinear variational inequality The dual variational inequality is also developed.It is shown that the dual variational inequality is much easier than the primalvariational problem. Application to limit analysis is illustrated.
基金Supported by the National Natural Science Foundation of China under Grant No.10675061the Doctoral Foundation of the Ministry of Education of China under Grant No.20060055006
文摘Dual actions with respect to U(1) gauge fields for the Born-Infeld and Dp-brane theories are reexamined.Taking into account an additional condition,i.e.a corollary to the field equation of the auxiliary metric,one obtainsan alternative dual action that does not involve the infinite series in the auxiliary metric given by [M.Abou Zeid andC.M.Hull,Phys.Lett.B 428 (1998) 277],but just picks out the first term from the series formally.New effectiveinteractions of the theories are revealed.That is,the new dual action gives rise to an effective interaction in terms ofone interaction term rather than infinitely many terms of different (higher) orders of interactions physically.However,the price paid for eliminating the infinite series is that the new action is not quadratic but highly nonlinear in the Hodgedual of a (p-1)-form field strength.This non-linearity is inevitable under the requirement that the two dual actionsare equivalent.
文摘The paper shows that the variational principle serves as an element of the mathematical structure of a quantum theory. The experimentally confirmed properties of the corpuscular-wave duality of a quantum particle are elements of the analysis. A Lagrangian density that yields the equations of motion of a given quantum theory of a massive particle is analyzed. It is proved that if this Lagrangian density is a Lorentz scalar whose dimension is ?then the associated action consistently defines the required phase of the quantum particle. The dimension of this Lagrangian density proves that also the quantum function ?has dimension. This result provides new criteria for the acceptability of quantum theories. An examination of the first order Dirac equation demonstrates that it satisfies the new criteria whereas the second order Klein-Gordon equation fails to do that.
文摘Based on Witten’s T-duality and mirror symmetry we show, following earlier work, the fundamental complimentarity of the Casimir energy and dark energy. Such a conclusion opens new vistas in cold fusion technology in the wider sense of the word which we tackle via fractal nano technologies leading to some design proposals for a nano Casimir-dark energy reactor.
文摘Neuroscience and physics have progressed far enough that the explanatory gap between models of matter and the substance of perceptual experience is tantalizingly close to being bridged, at least insofar as consciousness is produced by the brain. This paper aims to describe the basics of how signals are transmitted within neurons via electromagnetic energy fluctuations, how EM fields emergent from these energy flows manifest as the subconscious and an experience of willed agency, as well as how the quantum principles which both EM radiation and atomic structure abide combine them to form percepts from electromagnetic matter. This might be the most promising option yet for fashioning a physical paradigm that theorizes consciousness.
文摘The purpose of this research is to give a dual description of conformal blocks of <i>d</i>=2 rational CFT (conformal field theory) in terms of Hecke eigenforms and eigensheaves. In particular, partition functions, conformal characters and lattice theta functions may be reconstructed from the action of Hecke operators. This method can be applied to: 1) rings of integers of Galois number fields equipped with the trace (or anti-trace) form;2) root lattices of affine Kac-Moody algebras and WZW-models;3) minimal models of Belavin-Polyakov-Zamolodchikov and related <i>d</i>=2 spin-chain/lattice models;4) vertex algebras of Leech and Niemeier lattices and others. We also use the original Witten’s idea to construct the 3-dimensional quantum gravity as the AdS/CFT-dual of <i>c</i>=24 Monster vertex algebra of Frenkel-Lepowsky- Meurman. Concerning the geometric Langlands duality, we use results of Beilinson-Drinfeld, Frenkel-Ben-Zvi, Gukov-Kapustin-Witten and many others (<i>cf.</i> references). The main new result in this paper is the construction of number-theoretical lattice vertex superalgebras in Section 5 and applications to conformal field theories and quantum gravity.