An existence result on Ky Fan type best approximation is proved. For this pur- pose, a class of factorizable multifunctions and the other one being a demicontinuous, rela- tive almost quasi-convex, onto function on an...An existence result on Ky Fan type best approximation is proved. For this pur- pose, a class of factorizable multifunctions and the other one being a demicontinuous, rela- tive almost quasi-convex, onto function on an approximately weakly compact, convex sub- set of Hausdorff locally convex topological vector space are used. As consequence, this result extends the best approximation results of Basha and Veeramani[8] and many others.展开更多
This is the first part of a work on second order nonlinear, nonmonotone evolution inclusions defined in the framework of an evolution triple of spaces and with a multivalued nonlinearity depending on both x(t) and x...This is the first part of a work on second order nonlinear, nonmonotone evolution inclusions defined in the framework of an evolution triple of spaces and with a multivalued nonlinearity depending on both x(t) and x(t). In this first part we prove existence and relaxation theorems. We consider the case of an usc, convex valued nonlinearity and we show that for this problem the solution set is nonempty and compact in C^1 (T, H). Also we examine the Isc, nonconvex case and again we prove the existence of solutions. In addition we establish the existence of extremal solutions and by strengthening our hypotheses, we show that the extremal solutions are dense in C^1 (T, H) to the solutions of the original convex problem (strong relaxation). An example of a nonlinear hyperbolic optimal control problem is also discussed.展开更多
文摘An existence result on Ky Fan type best approximation is proved. For this pur- pose, a class of factorizable multifunctions and the other one being a demicontinuous, rela- tive almost quasi-convex, onto function on an approximately weakly compact, convex sub- set of Hausdorff locally convex topological vector space are used. As consequence, this result extends the best approximation results of Basha and Veeramani[8] and many others.
文摘This is the first part of a work on second order nonlinear, nonmonotone evolution inclusions defined in the framework of an evolution triple of spaces and with a multivalued nonlinearity depending on both x(t) and x(t). In this first part we prove existence and relaxation theorems. We consider the case of an usc, convex valued nonlinearity and we show that for this problem the solution set is nonempty and compact in C^1 (T, H). Also we examine the Isc, nonconvex case and again we prove the existence of solutions. In addition we establish the existence of extremal solutions and by strengthening our hypotheses, we show that the extremal solutions are dense in C^1 (T, H) to the solutions of the original convex problem (strong relaxation). An example of a nonlinear hyperbolic optimal control problem is also discussed.