期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Teaching the User By Learning From the User:Personalizing Movement Control in Physical Human-robot Interaction 被引量:1
1
作者 Ali Safavi Mehrdad H.Zadeh 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第4期704-713,共10页
This paper proposes a novel approach for physical human-robot interactions(pHRI), where a robot provides guidance forces to a user based on the user performance. This framework tunes the forces in regards to behavior ... This paper proposes a novel approach for physical human-robot interactions(pHRI), where a robot provides guidance forces to a user based on the user performance. This framework tunes the forces in regards to behavior of each user in coping with different tasks, where lower performance results in higher intervention from the robot. This personalized physical human-robot interaction(p2HRI) method incorporates adaptive modeling of the interaction between the human and the robot as well as learning from demonstration(LfD) techniques to adapt to the users' performance. This approach is based on model predictive control where the system optimizes the rendered forces by predicting the performance of the user. Moreover, continuous learning of the user behavior is added so that the models and personalized considerations are updated based on the change of user performance over time. Applying this framework to a field such as haptic guidance for skill improvement, allows a more personalized learning experience where the interaction between the robot as the intelligent tutor and the student as the user,is better adjusted based on the skill level of the individual and their gradual improvement. The results suggest that the precision of the model of the interaction is improved using this proposed method,and the addition of the considered personalized factors to a more adaptive strategy for rendering of guidance forces. 展开更多
关键词 Haptic guidance learning from demonstration(LfD) personalized physical human-robot interaction(p2HRI) user performance
下载PDF
Extended DMPs Framework for Position and Decoupled Quaternion Learning and Generalization
2
作者 Zhiwei Liao Fei Zhao +1 位作者 Gedong Jiang Xuesong Mei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第4期227-239,共13页
Dynamic movement primitives(DMPs)as a robust and efcient framework has been studied widely for robot learning from demonstration.Classical DMPs framework mainly focuses on the movement learning in Cartesian or joint s... Dynamic movement primitives(DMPs)as a robust and efcient framework has been studied widely for robot learning from demonstration.Classical DMPs framework mainly focuses on the movement learning in Cartesian or joint space,and can’t properly represent end-efector orientation.In this paper,we present an extended DMPs framework(EDMPs)both in Cartesian space and 2-Dimensional(2D)sphere manifold for Quaternion-based orientation learning and generalization.Gaussian mixture model and Gaussian mixture regression(GMM-GMR)are adopted as the initialization phase of EDMPs to handle multi-demonstrations and obtain their mean and covariance.Additionally,some evaluation indicators including reachability and similarity are defned to characterize the learning and generalization abilities of EDMPs.Finally,a real-world experiment was conducted with human demonstrations,the endpoint poses of human arm were recorded and successfully transferred from human to the robot.The experimental results show that the absolute errors of the Cartesian and Riemannian space skills are less than 3.5 mm and 1.0°,respectively.The Pearson’s correlation coefcients of the Cartesian and Riemannian space skills are mostly greater than 0.9.The developed EDMPs exhibits superior reachability and similarity for the multi-space skills’learning and generalization.This research proposes a fused framework with EDMPs and GMM-GMR which has sufcient capability to handle the multi-space skills in multi-demonstrations. 展开更多
关键词 learning from demonstration Dynamic movement primitives 2D sphere manifold Gaussian mixture model Gaussian mixture regression Quaternion-based orientation
下载PDF
Robot learning from demonstration for path planning: A review 被引量:7
3
作者 XIE ZongWu ZHANG Qi +1 位作者 JIANG ZaiNan LIU Hong 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第8期1325-1334,共10页
Learning from demonstration(LfD)is an appealing method of helping robots learn new skills.Numerous papers have presented methods of LfD with good performance in robotics.However,complicated robot tasks that need to ca... Learning from demonstration(LfD)is an appealing method of helping robots learn new skills.Numerous papers have presented methods of LfD with good performance in robotics.However,complicated robot tasks that need to carefully regulate path planning strategies remain unanswered.Contact or non-contact constraints in specific robot tasks make the path planning problem more difficult,as the interaction between the robot and the environment is time-varying.In this paper,we focus on the path planning of complex robot tasks in the domain of LfD and give a novel perspective for classifying imitation learning and inverse reinforcement learning.This classification is based on constraints and obstacle avoidance.Finally,we summarize these methods and present promising directions for robot application and LfD theory. 展开更多
关键词 learning from demonstration path planning imitation learning inverse reinforcement learning obstacle avoidance
原文传递
Autonomous planning and control strategy for space manipulators with dynamics uncertainty based on learning from demonstrations 被引量:2
4
作者 LI ChongYang LI ZhiQi +3 位作者 JIANG ZaiNan CUI ShiPeng LIU Hong CAI HeGao 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第12期2662-2675,共14页
Autonomous planning is a significant development direction of the space manipulator,and learning from demonstrations(LfD)is a potential strategy for complex tasks in the field.However,separating control from planning ... Autonomous planning is a significant development direction of the space manipulator,and learning from demonstrations(LfD)is a potential strategy for complex tasks in the field.However,separating control from planning may cause large torque fluctuations and energy consumptions,even instability or danger in control of space manipulators,especially for the planning based on the human demonstrations.Therefore,we present an autonomous planning and control strategy for space manipulators based on LfD and focus on the dynamics uncertainty problem,a common problem of actual manipulators.The process can be divided into three stages:firstly,we reproduced the stochastic directed trajectory based on the Gaussian process-based LfD;secondly,we built the model of the stochastic dynamics of the actual manipulator with Gaussian process;thirdly,we designed an optimal controller based on the dynamics model to obtain the improved commanded torques and trajectory,and used the separation theorem to deal with stochastic characteristics during control.We evaluated the strategy with locating pre-screwed bolts experiment by Tiangong-2 manipulator system on the ground.The result showed that,compared with other strategies,the strategy proposed in this paper could significantly reduce torque fluctuations and energy consumptions,and its precision can meet the task requirements. 展开更多
关键词 space manipulator optimal control dynamics uncertainty learning from demonstrations
原文传递
Dynamic Movement Primitives Based Robot Skills Learning 被引量:1
5
作者 Ling-Huan Kong Wei He +2 位作者 Wen-Shi Chen Hui Zhang Yao-Nan Wang 《Machine Intelligence Research》 EI CSCD 2023年第3期396-407,共12页
In this article,a robot skills learning framework is developed,which considers both motion modeling and execution.In order to enable the robot to learn skills from demonstrations,a learning method called dynamic movem... In this article,a robot skills learning framework is developed,which considers both motion modeling and execution.In order to enable the robot to learn skills from demonstrations,a learning method called dynamic movement primitives(DMPs)is introduced to model motion.A staged teaching strategy is integrated into DMPs frameworks to enhance the generality such that the complicated tasks can be also performed for multi-joint manipulators.The DMP connection method is used to make an accurate and smooth transition in position and velocity space to connect complex motion sequences.In addition,motions are categorized into different goals and durations.It is worth mentioning that an adaptive neural networks(NNs)control method is proposed to achieve highly accurate trajectory tracking and to ensure the performance of action execution,which is beneficial to the improvement of reliability of the skills learning system.The experiment test on the Baxter robot verifies the effectiveness of the proposed method. 展开更多
关键词 Dynamic movement primitives(DMPs) trajectory tracking control robot learning from demonstrations neural networks(NNs) adaptive control
原文传递
LIDAR:learning from imperfect demonstrations with advantage rectification
6
作者 Xiaoqin ZHANG Huimin MA +1 位作者 Xiong LUO Jian YUAN 《Frontiers of Computer Science》 SCIE EI CSCD 2022年第1期57-66,共10页
In actor-critic reinforcement learning(RL)algorithms,function estimation errors are known to cause ineffective random exploration at the beginning of training,and lead to overestimated value estimates and suboptimal p... In actor-critic reinforcement learning(RL)algorithms,function estimation errors are known to cause ineffective random exploration at the beginning of training,and lead to overestimated value estimates and suboptimal policies.In this paper,we address the problem by executing advantage rectification with imperfect demonstrations,thus reducing the function estimation errors.Pretraining with expert demonstrations has been widely adopted to accelerate the learning process of deep reinforcement learning when simulations are expensive to obtain.However,existing methods,such as behavior cloning,often assume the demonstrations contain other information or labels with regard to performances,such as optimal assumption,which is usually incorrect and useless in the real world.In this paper,we explicitly handle imperfect demonstrations within the actor-critic RL frameworks,and propose a new method called learning from imperfect demonstrations with advantage rectification(LIDAR).LIDAR utilizes a rectified loss function to merely learn from selective demonstrations,which is derived from a minimal assumption that the demonstrating policies have better performances than our current policy.LIDAR learns from contradictions caused by estimation errors,and in turn reduces estimation errors.We apply LIDAR to three popular actor-critic algorithms,DDPG,TD3 and SAC,and experiments show that our method can observably reduce the function estimation errors,effectively leverage demonstrations far from the optimal,and outperform state-of-the-art baselines consistently in all the scenarios. 展开更多
关键词 learning from demonstrations actor-critic reinforcement learning advantage rectification
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部