As a novel electric demulsification method,bidirectional pulsed electric field(BPEF)was employed to demulsify the surfactant stabilized oil-in-water(SSO/W)emulsion for oil/water separation in this work.The demulsifica...As a novel electric demulsification method,bidirectional pulsed electric field(BPEF)was employed to demulsify the surfactant stabilized oil-in-water(SSO/W)emulsion for oil/water separation in this work.The demulsification behavior,characteristics,and stages under BPEF were explored.It was discovered that BPEF drove SSO/W emulsion to move and form vortexes,during which the oil droplets aggregated and accumulated to generate an oil droplet layer(ODL).ODL subsequently transformed into a continuous oil layer(COL)leading to the demulsification and separation of SSO/W emulsion.The conversion rate of ODL to COL was defined and used to evaluate the demulsification process and reflect the coalescence ability and transformation efficiency of dispersed oil droplets into COL.Furthermore,the effects of BPEF voltage,frequency,duty cycle,ratio of pulse output time,and surfactant type and content on the demulsification performance were examined.The optimal values of BPEF parameters for demulsification operation were 400 V,25 Hz,50%,and 4:1.O/W emulsion containing anionic surfactant was apt to be demulsified by BPEF,nonionic surfactant took the second place and cationic surfactant was the most difficult.A high surfactant content was not conducive to the BPEF demulsification.This work is anticipated to provide useful guidance for oil/water separation and oil recovery from actual emulsified oily wastewater by BPEF.展开更多
Demulsification of emulsified water-in-oil droplets was worked out with the employment of wetting coalescence materials. Demulsification is carried out in conventional stirred-column and packed-column. Among the four ...Demulsification of emulsified water-in-oil droplets was worked out with the employment of wetting coalescence materials. Demulsification is carried out in conventional stirred-column and packed-column. Among the four kinds of natural fibers and two kinds of inorganic materials tested, natural fiber A, originated from wood shavings was found to give the best performance of demulsification. The demulsification efficiency can exceed 96.5% when demulsification conditions are optimized. The packed-column showed much better performance both in terms of demulsification efficiency and repeated use of the recovered oil phase for extracting cadmium in simulated wastewater. Operating variables governing the demulsification efficiency were investigated.展开更多
The hydrophilic porous glass membranes were used to demulsify water in oil emulsion, liquid membrane and demulsification efficiency can reach more than 96 percent. Effects of pore size of the membrane, transmembrane p...The hydrophilic porous glass membranes were used to demulsify water in oil emulsion, liquid membrane and demulsification efficiency can reach more than 96 percent. Effects of pore size of the membrane, transmembrane pressure and volumetric ratio of oil phase to internal aqueous phase in the emulsion on demulsification were investigated. Correspondingly, effect of transmembrane pressure on permeation flux of the droplets was also studied.展开更多
This paper introduces working principle and technical features of vacuum filter in emulsion system for tandem cold strip mill.Based on specific cases,this paper analyses and assesses the effect before and after using ...This paper introduces working principle and technical features of vacuum filter in emulsion system for tandem cold strip mill.Based on specific cases,this paper analyses and assesses the effect before and after using the emulsion system with the usage of the vacuum filter for strip mill.Compare with the effect when using the first generation vacuum filter,the emulsion quality is improved significantly by using the second generation vacuum filter,which at the same time ensures steady operation of the rolling mill and surface quality of the mill products. As a result,investment and running costs are lowered,emissions of the waste emulsion are reduced,waste water treatment costs are reduced and so as the environmental pollution.It can be seen the second generation vacuum filter has obvious economic and environmental benefits.Therefor,it suggests that the filter should be used widely in the field of automotive,environmental protection rolling steel and nonferrous metals.展开更多
Magnetic particles were coupled with a flocculant to enhance the demulsification and separation of waste cutting emulsions.The optimal magnetic particle size and critical magnetic field conditions were investigated to...Magnetic particles were coupled with a flocculant to enhance the demulsification and separation of waste cutting emulsions.The optimal magnetic particle size and critical magnetic field conditions were investigated to achieve large-scale engineering application of magnetic demulsification separation for waste cutting emulsion treatment.The micro-scale magnetic particles were found to show comparable effects to nano-scale magnetic particles on enhancing the demulsification and separation of cutting emulsions,which are beneficial for broadening the selectivity of low-cost magnetic particles.The critical magnetic separation region was determined to be an area 40 mm from the magnetic field source.Compared to the flocculant demulsification,the magnetic demulsification separation exhibited a significant advantage in accelerating flocs-water separation by decreasing the separation time of flocs from 180-240 min to less than 15 min,compressing the flocs by reducing the floc volume ratio from 60%-90%to lower than 20%,and showing excellent adaptability to the variable properties of waste cutting emulsions.Coupled with the design of the magnetic disk separator,continuous demulsification separation of the waste cutting emulsion was achieved at 1.0 t/hr for at least 10 hr to obtain clear effluent with 81%chemical oxygen demand removal and 89%turbidity reduction.This study demonstrates the feasibility of applying magnetic demulsification separation to large-scale continuous treatment of waste emulsion.Moreover,it addresses the flocs-water separation problems that occur in practical flocculant demulsification engineering applications.展开更多
A novel method for breaking emulsions with microporous membranes is presented.A membrane would act as a coalescer if its pore size is smaller than the emulsion droplets and if the dispersed phase has great affinity to...A novel method for breaking emulsions with microporous membranes is presented.A membrane would act as a coalescer if its pore size is smaller than the emulsion droplets and if the dispersed phase has great affinity to the membrane.It was observed that a hydrophilic membrane is able to break water in oil emulsions with high separation efficiency.Effects of the membrane pore size,membrane thickness,transmembrane pressure and emulsion composition on demulsification performance were investigated.It was found that the membrane pore size and transmembrane pressure affect demulsification performance remarkably while other factors have slight or almost no effect.展开更多
The crude oil recovery process is frequently associated with the formation of stable emulsions due to factors such as turbulent flow in pipelines and the presence of surface-active substances that naturally occur in c...The crude oil recovery process is frequently associated with the formation of stable emulsions due to factors such as turbulent flow in pipelines and the presence of surface-active substances that naturally occur in crude oil.These emulsions are undesirable for the petroleum industry because their destruction/treatment adds to the overall production cost and causes the loss of valuable amounts of crude oil.Therefore,it is essential,for economic and environmental reasons,to optimize the crude oil demulsification process.The effective treatment of crude oil emulsions requires understanding of the process and factors leading to their formation and stabilization.In this sense,suitable treatment methods and possible preventive measures to avoid their formation can be employed.The present study reviews recent oilfield emulsion types and the factors responsible for their formation and stabilization.The different demulsification techniques employed were then extensively examined.Demulsification tech-niques include mechanical,thermal,electrical,and chemical methods with different demulsification mechanisms affected by many factors such as emulsions type and properties,demulsifiers characteris-tics,presence of solids stabilized emulsions,etc.The demulsification efficiency depends on the operating parameters of the process,the economics involved,and the environmental impact,which are the main factors considered in selecting a suitable demulsification technique.Future research on the demulsifi-cation of crude oil emulsions should focus on real crude oil emulsions studies at a pilot scale level,the effect of aging on crude oil emulsions,the combination of multiple demulsification techniques and their synergistic effects,and the use of natural,ecofriendly demulsifiers.展开更多
Stable water-in-oil emulsions are produced in oil exploitation and cause many environmental and operational issues.In this paper,a co-polymer demulsifier is reported in detail;an emulsion polymerization method is used...Stable water-in-oil emulsions are produced in oil exploitation and cause many environmental and operational issues.In this paper,a co-polymer demulsifier is reported in detail;an emulsion polymerization method is used to prepare nano-P(MMA-AA-EA)with MMA,AA and EA as the monomers,DVB as the cross-linker and APS as the initiator.The resulting products are characterized by FT-IR.Furthermore,the surface tension and particles size analysis is investigated.The results show that the surface tension reduction is 10.66 mN/m at 20?C when the concentration of co-polymer is 1000 ppm and the average size is 76.99 nm.Moreover,the HLB of polymer is discussed specifically by changing the amount of AA.With the increase of AA,the HLB value of the polymer is increased accordingly.Besides,the demulsification performance of the co-polymer is also evaluated at different synthesis and demulsification conditions.It is showed that the maximum demulsification efficiency is 96%at 70?C for 60 min.The optimum concentration of demulsifier is 400 ppm when the amounts of AA and DVB are 1.4 g and 0.1 g,respectively.At last,the process of demulsification is showed under a microscope;the coalescence process of water droplets is indicated under the action of the demulsifier.展开更多
With the increasing demand of recycling disposal of industrial wastewater,oil-in-water(O/W)emulsion has been paid much attention in recent years owing to its high oil con-tent.However,due to the presence of surfactant...With the increasing demand of recycling disposal of industrial wastewater,oil-in-water(O/W)emulsion has been paid much attention in recent years owing to its high oil con-tent.However,due to the presence of surfactant and salt,the emulsion was usually stable with complex physicochemical interfacial properties leading to increased processing diffi-culty.Herein,a novel flow-through electrode-based demulsification reactor(FEDR)was well designed for the treatment of saline O/W emulsion.In contrast to 53.7%for electrical demul-sification only and 80.3%for filtration only,the COD removal efficiency increased to 92.8%under FEDR system.Moreover,the pore size of electrode and the applied voltage were two key factors that governed the FEDR demulsification performance.By observing the mor-phology of oil droplets deposited layer after different operation conditions and the behavior of oil droplets at the electrode surface under different voltage conditions,the mechanism was proposed that the oil droplets first accumulated on the surface of flow-through elec-trode by sieving effect,subsequently the gathered oil droplets could further coalesce with the promoting effect of the anode,leading to a high-performing demulsification.This study offers an attractive option of using flow-through electrode to accomplish the oil recovery with simultaneous water purification.展开更多
Electrospinning and calcination technique have been combined to fabricate N-doped carbon nanofibers(N-CNFs)by introducing amino grafted few-layered hexagonal boron nitride(amino@BN)into polyacrylonitrile(PAN)matrix as...Electrospinning and calcination technique have been combined to fabricate N-doped carbon nanofibers(N-CNFs)by introducing amino grafted few-layered hexagonal boron nitride(amino@BN)into polyacrylonitrile(PAN)matrix as filler followed by carbonization.For the high N-doping level(10.7%,atomic fraction)with the final product,the as-prepared N-CNFs exhibit interesting surface wettability(superamphiphilicity in air and underwater oleophilicity).Moreover,compared with pristine PAN derived carbon nanofibers(marked as CNFs),N-CNFs exhibit higher graphic structure under fixed carbonizing temperature as well.Taking these advantages aforementioned,the as-prepared N-CNFs exhibit good specific capacitance(ca.200.1 F/g)without activation treatment at the current density of 0.5 A/g in three-electrode configuration,which is about 149%that of CNFs(ca.134 F/g).What’s more,our N-CNFs also display the unexpected capacity to demulsify diverse surfactant free oil-in-water emulsions by simple filtration in large scale with the high water flux ca.(23578±150)L·m^(−2)·h^(−1).展开更多
The efficient and rapid separation of oil from stabilized oil-in-water emulsions with micro/nanometer size is a global challenge.Owing to the low oil content in oil-in-water emulsions,separating the oil by simply cont...The efficient and rapid separation of oil from stabilized oil-in-water emulsions with micro/nanometer size is a global challenge.Owing to the low oil content in oil-in-water emulsions,separating the oil by simply controlling the surface wettability is difficult.Controlling the pore size of the membrane surface to achieve separation will lead to a sharp decrease in flux.Herein,inspired by cell membrane transportation,a hydrophilic/hydrophobic bifunctional Janus membrane for stable oil-in-water separation was prepared by simple surface polymerization and vapor diffusion.The prepared Janus membrane contained a hydrophobic side and hydrophilic polyamine layer.When used for oil-in-water emulsion separation,the polyamine layer accumulated micro/nanometer oil droplets,forming an oil layer on the hydrophobic surface.Water was retained by the 1H,1H,2H,2H-perfluorooctyl trichlorosilane layer,allowing oil droplets to selectively permeate through the membrane,achieving the separation effect.As the pore size of the modified fabric was basically unchanged,the permeation flux was fast(1.53×10^(3) Lm^(−2) h^(−1)).Furthermore,the poly(N,N-dimethylaminoethyl methacrylate)layer destroyed the emulsion stability,making the emulsion droplets aggregate without affecting the separation efficiency with fast permeation flux.Therefore,the prepared bifunctional Janus membrane shows great potential for actual wastewater treatment.展开更多
OBJECTIVE: To evaluate the clinical efficacy of a new formulation of albendazole emulsion (AbzE) in cases of liver cystic hydatidosis. METHODS: Two regimens of AbzE (10 mg.kg(-1).d(-1) and 12.5 mg.kg(-1).d(-1)) were g...OBJECTIVE: To evaluate the clinical efficacy of a new formulation of albendazole emulsion (AbzE) in cases of liver cystic hydatidosis. METHODS: Two regimens of AbzE (10 mg.kg(-1).d(-1) and 12.5 mg.kg(-1).d(-1)) were given to 212 patients with liver cystic hydatidosis in courses ranging from 3 months to more than one year. Assessment of drug efficacy was essentially based on imaging signs with ultrasonography as the main tool. Assessments were performed at the end of different courses and in the follow-up study of 1 - 4 years after the cessation of therapy. RESULTS: At the end of therapeutic courses, the overall cure rate of the 212 cases was 74.5%, with a 99.1% effective rate. In the follow-up study, the cure rate was 83.1%, effective rate was 89.3%, ineffective rate was 0.6%, and recurrence rate was 10.2%. The highest cure rate was observed in cases receiving AbzE 12.5 mg.kg(-1).d(-1) for 9 months. Retreatment of recurrent cases with AbzE obtained satisfactory results. CONCLUSIONS: AbzE surpassed other currently used antihydatidosis drugs or formulations with its promising efficacy and mild side effects, and could be recommended as a drug of choice in the treatment of cystic hydatidosis.展开更多
A functional fabric with hierarchical structure consisting of basalt fibre fabric as a substrate and polyvinyl alcohol as a coating was developed,aiming at providing a low cost and high-performance way to separate hig...A functional fabric with hierarchical structure consisting of basalt fibre fabric as a substrate and polyvinyl alcohol as a coating was developed,aiming at providing a low cost and high-performance way to separate highly emulsified oil in water.The coating functioned as a hydrophilic gate for the penetration of water in the emulsion,whereas the micro-channels formed in the fabric offered capillary force for the continuous flow of water.The synergy of these two materials led to the increase on the oil concentration in the liquid,which in turn enhanced the collision of emulsified oil droplets to aggregate into large ones in the emulsion and resulted separation from the water.Based on these findings,an aggregation-induced demulsification process was proposed to explain the above phenomenon,and the mechanism was confirmed by studying the distribution of oil droplets in emulsion with a controlled separation degree.展开更多
基金Scientific Platform Project of the Ministry of Education(fykf201907)the Postdoctoral Science Foundation Project of the Natural Science Foundation of Chongqing Municipality(cstc2021jcyjbshX0194)+3 种基金Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202100820 and KJZD-K201900804)Science and Technology Innovation Project of the Construction of the Chengdu-Chongqing Economic Circle of Chongqing Municipal Education Commission(KJCX2020036)Scientific Research Project of Chongqing Technology and Business University(2152016 and 2056006)Chongqing Technical Innovation and Application Project(cstc2019jscx-msxmX0275).
文摘As a novel electric demulsification method,bidirectional pulsed electric field(BPEF)was employed to demulsify the surfactant stabilized oil-in-water(SSO/W)emulsion for oil/water separation in this work.The demulsification behavior,characteristics,and stages under BPEF were explored.It was discovered that BPEF drove SSO/W emulsion to move and form vortexes,during which the oil droplets aggregated and accumulated to generate an oil droplet layer(ODL).ODL subsequently transformed into a continuous oil layer(COL)leading to the demulsification and separation of SSO/W emulsion.The conversion rate of ODL to COL was defined and used to evaluate the demulsification process and reflect the coalescence ability and transformation efficiency of dispersed oil droplets into COL.Furthermore,the effects of BPEF voltage,frequency,duty cycle,ratio of pulse output time,and surfactant type and content on the demulsification performance were examined.The optimal values of BPEF parameters for demulsification operation were 400 V,25 Hz,50%,and 4:1.O/W emulsion containing anionic surfactant was apt to be demulsified by BPEF,nonionic surfactant took the second place and cationic surfactant was the most difficult.A high surfactant content was not conducive to the BPEF demulsification.This work is anticipated to provide useful guidance for oil/water separation and oil recovery from actual emulsified oily wastewater by BPEF.
文摘Demulsification of emulsified water-in-oil droplets was worked out with the employment of wetting coalescence materials. Demulsification is carried out in conventional stirred-column and packed-column. Among the four kinds of natural fibers and two kinds of inorganic materials tested, natural fiber A, originated from wood shavings was found to give the best performance of demulsification. The demulsification efficiency can exceed 96.5% when demulsification conditions are optimized. The packed-column showed much better performance both in terms of demulsification efficiency and repeated use of the recovered oil phase for extracting cadmium in simulated wastewater. Operating variables governing the demulsification efficiency were investigated.
文摘The hydrophilic porous glass membranes were used to demulsify water in oil emulsion, liquid membrane and demulsification efficiency can reach more than 96 percent. Effects of pore size of the membrane, transmembrane pressure and volumetric ratio of oil phase to internal aqueous phase in the emulsion on demulsification were investigated. Correspondingly, effect of transmembrane pressure on permeation flux of the droplets was also studied.
文摘This paper introduces working principle and technical features of vacuum filter in emulsion system for tandem cold strip mill.Based on specific cases,this paper analyses and assesses the effect before and after using the emulsion system with the usage of the vacuum filter for strip mill.Compare with the effect when using the first generation vacuum filter,the emulsion quality is improved significantly by using the second generation vacuum filter,which at the same time ensures steady operation of the rolling mill and surface quality of the mill products. As a result,investment and running costs are lowered,emissions of the waste emulsion are reduced,waste water treatment costs are reduced and so as the environmental pollution.It can be seen the second generation vacuum filter has obvious economic and environmental benefits.Therefor,it suggests that the filter should be used widely in the field of automotive,environmental protection rolling steel and nonferrous metals.
基金supported by the National Natural Science Foundation of China(No.51978490)Natural Science Foun-dation of Shanghai(No.20ZDR1461200)the Major Sci-ence and Technology Program for Water Pollution Control and Treatment,China(No.2017ZX07202003-02).
文摘Magnetic particles were coupled with a flocculant to enhance the demulsification and separation of waste cutting emulsions.The optimal magnetic particle size and critical magnetic field conditions were investigated to achieve large-scale engineering application of magnetic demulsification separation for waste cutting emulsion treatment.The micro-scale magnetic particles were found to show comparable effects to nano-scale magnetic particles on enhancing the demulsification and separation of cutting emulsions,which are beneficial for broadening the selectivity of low-cost magnetic particles.The critical magnetic separation region was determined to be an area 40 mm from the magnetic field source.Compared to the flocculant demulsification,the magnetic demulsification separation exhibited a significant advantage in accelerating flocs-water separation by decreasing the separation time of flocs from 180-240 min to less than 15 min,compressing the flocs by reducing the floc volume ratio from 60%-90%to lower than 20%,and showing excellent adaptability to the variable properties of waste cutting emulsions.Coupled with the design of the magnetic disk separator,continuous demulsification separation of the waste cutting emulsion was achieved at 1.0 t/hr for at least 10 hr to obtain clear effluent with 81%chemical oxygen demand removal and 89%turbidity reduction.This study demonstrates the feasibility of applying magnetic demulsification separation to large-scale continuous treatment of waste emulsion.Moreover,it addresses the flocs-water separation problems that occur in practical flocculant demulsification engineering applications.
文摘A novel method for breaking emulsions with microporous membranes is presented.A membrane would act as a coalescer if its pore size is smaller than the emulsion droplets and if the dispersed phase has great affinity to the membrane.It was observed that a hydrophilic membrane is able to break water in oil emulsions with high separation efficiency.Effects of the membrane pore size,membrane thickness,transmembrane pressure and emulsion composition on demulsification performance were investigated.It was found that the membrane pore size and transmembrane pressure affect demulsification performance remarkably while other factors have slight or almost no effect.
文摘The crude oil recovery process is frequently associated with the formation of stable emulsions due to factors such as turbulent flow in pipelines and the presence of surface-active substances that naturally occur in crude oil.These emulsions are undesirable for the petroleum industry because their destruction/treatment adds to the overall production cost and causes the loss of valuable amounts of crude oil.Therefore,it is essential,for economic and environmental reasons,to optimize the crude oil demulsification process.The effective treatment of crude oil emulsions requires understanding of the process and factors leading to their formation and stabilization.In this sense,suitable treatment methods and possible preventive measures to avoid their formation can be employed.The present study reviews recent oilfield emulsion types and the factors responsible for their formation and stabilization.The different demulsification techniques employed were then extensively examined.Demulsification tech-niques include mechanical,thermal,electrical,and chemical methods with different demulsification mechanisms affected by many factors such as emulsions type and properties,demulsifiers characteris-tics,presence of solids stabilized emulsions,etc.The demulsification efficiency depends on the operating parameters of the process,the economics involved,and the environmental impact,which are the main factors considered in selecting a suitable demulsification technique.Future research on the demulsifi-cation of crude oil emulsions should focus on real crude oil emulsions studies at a pilot scale level,the effect of aging on crude oil emulsions,the combination of multiple demulsification techniques and their synergistic effects,and the use of natural,ecofriendly demulsifiers.
基金the Open Project Program of State Key Laboratory of Petroleum Pollution Control(Grant No.PPC2016006)CNPC Research Institute of Safety and Environmental Technology.
文摘Stable water-in-oil emulsions are produced in oil exploitation and cause many environmental and operational issues.In this paper,a co-polymer demulsifier is reported in detail;an emulsion polymerization method is used to prepare nano-P(MMA-AA-EA)with MMA,AA and EA as the monomers,DVB as the cross-linker and APS as the initiator.The resulting products are characterized by FT-IR.Furthermore,the surface tension and particles size analysis is investigated.The results show that the surface tension reduction is 10.66 mN/m at 20?C when the concentration of co-polymer is 1000 ppm and the average size is 76.99 nm.Moreover,the HLB of polymer is discussed specifically by changing the amount of AA.With the increase of AA,the HLB value of the polymer is increased accordingly.Besides,the demulsification performance of the co-polymer is also evaluated at different synthesis and demulsification conditions.It is showed that the maximum demulsification efficiency is 96%at 70?C for 60 min.The optimum concentration of demulsifier is 400 ppm when the amounts of AA and DVB are 1.4 g and 0.1 g,respectively.At last,the process of demulsification is showed under a microscope;the coalescence process of water droplets is indicated under the action of the demulsifier.
基金supported by the National Natural Science Foundation of China(Nos.22022606 and 52221004).
文摘With the increasing demand of recycling disposal of industrial wastewater,oil-in-water(O/W)emulsion has been paid much attention in recent years owing to its high oil con-tent.However,due to the presence of surfactant and salt,the emulsion was usually stable with complex physicochemical interfacial properties leading to increased processing diffi-culty.Herein,a novel flow-through electrode-based demulsification reactor(FEDR)was well designed for the treatment of saline O/W emulsion.In contrast to 53.7%for electrical demul-sification only and 80.3%for filtration only,the COD removal efficiency increased to 92.8%under FEDR system.Moreover,the pore size of electrode and the applied voltage were two key factors that governed the FEDR demulsification performance.By observing the mor-phology of oil droplets deposited layer after different operation conditions and the behavior of oil droplets at the electrode surface under different voltage conditions,the mechanism was proposed that the oil droplets first accumulated on the surface of flow-through elec-trode by sieving effect,subsequently the gathered oil droplets could further coalesce with the promoting effect of the anode,leading to a high-performing demulsification.This study offers an attractive option of using flow-through electrode to accomplish the oil recovery with simultaneous water purification.
基金This work is supported by the National Natural Science Foundation of China(No.52073238)the Open Funds of the State Key Laboratory of Oil and Gas Reservoir Geology and Exploration of Southwest Petroleum University,China(Nos.PLN2018-06,PLN2020-19)the Fund of the Sichuan Provincial University Key Laboratory of Oil and Gas Field Materials,China(Nos.X151518KCL04,X151518KCL07).
文摘Electrospinning and calcination technique have been combined to fabricate N-doped carbon nanofibers(N-CNFs)by introducing amino grafted few-layered hexagonal boron nitride(amino@BN)into polyacrylonitrile(PAN)matrix as filler followed by carbonization.For the high N-doping level(10.7%,atomic fraction)with the final product,the as-prepared N-CNFs exhibit interesting surface wettability(superamphiphilicity in air and underwater oleophilicity).Moreover,compared with pristine PAN derived carbon nanofibers(marked as CNFs),N-CNFs exhibit higher graphic structure under fixed carbonizing temperature as well.Taking these advantages aforementioned,the as-prepared N-CNFs exhibit good specific capacitance(ca.200.1 F/g)without activation treatment at the current density of 0.5 A/g in three-electrode configuration,which is about 149%that of CNFs(ca.134 F/g).What’s more,our N-CNFs also display the unexpected capacity to demulsify diverse surfactant free oil-in-water emulsions by simple filtration in large scale with the high water flux ca.(23578±150)L·m^(−2)·h^(−1).
基金supported by the National Key Research and Development Program of China(Grant No.2020YFC1808401)the National Natural Science Foundation of China(Grant Nos.22078213,21938006,51973148,21776190)+1 种基金the Cutting-edge Technology Basic Research Project of Jiangsu(Grant No.BK20202012)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘The efficient and rapid separation of oil from stabilized oil-in-water emulsions with micro/nanometer size is a global challenge.Owing to the low oil content in oil-in-water emulsions,separating the oil by simply controlling the surface wettability is difficult.Controlling the pore size of the membrane surface to achieve separation will lead to a sharp decrease in flux.Herein,inspired by cell membrane transportation,a hydrophilic/hydrophobic bifunctional Janus membrane for stable oil-in-water separation was prepared by simple surface polymerization and vapor diffusion.The prepared Janus membrane contained a hydrophobic side and hydrophilic polyamine layer.When used for oil-in-water emulsion separation,the polyamine layer accumulated micro/nanometer oil droplets,forming an oil layer on the hydrophobic surface.Water was retained by the 1H,1H,2H,2H-perfluorooctyl trichlorosilane layer,allowing oil droplets to selectively permeate through the membrane,achieving the separation effect.As the pore size of the modified fabric was basically unchanged,the permeation flux was fast(1.53×10^(3) Lm^(−2) h^(−1)).Furthermore,the poly(N,N-dimethylaminoethyl methacrylate)layer destroyed the emulsion stability,making the emulsion droplets aggregate without affecting the separation efficiency with fast permeation flux.Therefore,the prepared bifunctional Janus membrane shows great potential for actual wastewater treatment.
基金ThisstudywassupportedbytheNinthNationalFive yearPlanKeyResearchProject (No .96 90 6 0 4 0 9)
文摘OBJECTIVE: To evaluate the clinical efficacy of a new formulation of albendazole emulsion (AbzE) in cases of liver cystic hydatidosis. METHODS: Two regimens of AbzE (10 mg.kg(-1).d(-1) and 12.5 mg.kg(-1).d(-1)) were given to 212 patients with liver cystic hydatidosis in courses ranging from 3 months to more than one year. Assessment of drug efficacy was essentially based on imaging signs with ultrasonography as the main tool. Assessments were performed at the end of different courses and in the follow-up study of 1 - 4 years after the cessation of therapy. RESULTS: At the end of therapeutic courses, the overall cure rate of the 212 cases was 74.5%, with a 99.1% effective rate. In the follow-up study, the cure rate was 83.1%, effective rate was 89.3%, ineffective rate was 0.6%, and recurrence rate was 10.2%. The highest cure rate was observed in cases receiving AbzE 12.5 mg.kg(-1).d(-1) for 9 months. Retreatment of recurrent cases with AbzE obtained satisfactory results. CONCLUSIONS: AbzE surpassed other currently used antihydatidosis drugs or formulations with its promising efficacy and mild side effects, and could be recommended as a drug of choice in the treatment of cystic hydatidosis.
基金Western Light Foundation of Chinese Academy of Sciences,Grant/Award Numbers:2019-XBQNXZB-010,2019-JCTD-001Poverty Alleviation Program of CAS,Grant/Award Number:KFJ-FP-202103Program forAttracting High-Level Talents in Xingjiang Uyghur Autonomous Region。
文摘A functional fabric with hierarchical structure consisting of basalt fibre fabric as a substrate and polyvinyl alcohol as a coating was developed,aiming at providing a low cost and high-performance way to separate highly emulsified oil in water.The coating functioned as a hydrophilic gate for the penetration of water in the emulsion,whereas the micro-channels formed in the fabric offered capillary force for the continuous flow of water.The synergy of these two materials led to the increase on the oil concentration in the liquid,which in turn enhanced the collision of emulsified oil droplets to aggregate into large ones in the emulsion and resulted separation from the water.Based on these findings,an aggregation-induced demulsification process was proposed to explain the above phenomenon,and the mechanism was confirmed by studying the distribution of oil droplets in emulsion with a controlled separation degree.