期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Role of the porphyrins and demulsifiers in the aggregation process of asphaltenes at water/oil interfaces under desalting conditions:a molecular dynamics study 被引量:1
1
作者 H.Santos Silva A.Alfarra +3 位作者 G.Vallverdu D.Bégué B.Bouyssiere I.Baraille 《Petroleum Science》 SCIE CAS CSCD 2020年第3期797-810,共14页
Breaking water-in-oil emulsions during the refining of crude oils is an important step before any upgrading process is started.Asphaltene molecules are incriminated as playing an important role in this phenomenon.Unra... Breaking water-in-oil emulsions during the refining of crude oils is an important step before any upgrading process is started.Asphaltene molecules are incriminated as playing an important role in this phenomenon.Unraveling the mechanisms behind the affinity between them and water is a key step to understand how to break these emulsions more easily and require lower amounts of demulsifiers.Choosing which demulsifier molecule(s)to use is also primordial,but to do so rationally,one needs to know which are the molecular interactions in place between asphaltenes,porphyrins and water so that demulsifiers are chosen to destabilize a specific physical–chemical interaction.In this paper,we study the interactions arising between asphaltenes and porphyrins and six different molecules potentially displaying a demulsification action in the presence of water/oil interfaces.We demonstrate that the ionic demulsifier molecules present an interesting potential to either interact strongly with water,replacing asphaltenes in this interaction,or to interact with the active sites of asphaltenes,deactivating them and avoiding any asphaltenic interfacial activity.Finally,we also found that although asphaltenes do not migrate spontaneously toward the water/oil interfaces,porphyrins do so rather easily.This indicates that porphyrins do have an important activity at the water/oil interface. 展开更多
关键词 Asphaltenes aggregation Petroporphyrins Molecular dynamics Emulsion Water-oil interface demulsifiers
下载PDF
Experiment Study of Reverse Demulsifier on Simulated Water Sample Treatment at Different Oscillation Time and Different Concentrations of Drugging
2
作者 Baojun Liu Wanting Sun +3 位作者 Liping Guo Chengting Liu Mathias Vanflieberge Chamber Jan 《Open Journal of Applied Sciences》 2015年第12期764-770,共7页
In recent years, the water content of oilfield production fluid is high and there is a large amount of oily sewage. In order to improve the capability of sewage treatment, usually using demulsifier for oily sewage pro... In recent years, the water content of oilfield production fluid is high and there is a large amount of oily sewage. In order to improve the capability of sewage treatment, usually using demulsifier for oily sewage processing. This article uses simulated water sample to test the treatment effect of the optimized reverse demulsifier at different oscillation time. As the increase of action time and oscillation, the average size of droplets increases and the amount of the droplets under 1 μm decreases. 展开更多
关键词 Reverse DEMULSIFIER SIMULATED Water Sample Oil DROPLET Size
下载PDF
Oil-water Separation Properties of Produced Fluid by Polymer Flooding
3
作者 Li Jiexun Yue Jihong and Niu Weidong(The Third Oil-production Plant of Daqing Petroleum Administration) 《China Oil & Gas》 CAS 1996年第4期218-219,共2页
Oil-waterSeparationPropertiesofProducedFluidbyPolymerFloodingLiJiexun;YueJihongandNiuWeidong(TheThirdOil-pro... Oil-waterSeparationPropertiesofProducedFluidbyPolymerFloodingLiJiexun;YueJihongandNiuWeidong(TheThirdOil-productionPlantofDaq... 展开更多
关键词 DEMULSIFIER PRODUCED WATER OIL WATER SEPARATION
下载PDF
Emulsion Polymerization of P (MMA-AA-EA) and Its Demulsifying Performance in Water/Oil Emulsion
4
作者 Xia Jiang Zhiming Huang +2 位作者 Yuanzhu Mi Jiazhe Kuang Fan Ye 《Open Journal of Yangtze Oil and Gas》 2019年第3期212-224,共13页
Stable water-in-oil emulsions are produced in oil exploitation and cause many environmental and operational issues.In this paper,a co-polymer demulsifier is reported in detail;an emulsion polymerization method is used... Stable water-in-oil emulsions are produced in oil exploitation and cause many environmental and operational issues.In this paper,a co-polymer demulsifier is reported in detail;an emulsion polymerization method is used to prepare nano-P(MMA-AA-EA)with MMA,AA and EA as the monomers,DVB as the cross-linker and APS as the initiator.The resulting products are characterized by FT-IR.Furthermore,the surface tension and particles size analysis is investigated.The results show that the surface tension reduction is 10.66 mN/m at 20?C when the concentration of co-polymer is 1000 ppm and the average size is 76.99 nm.Moreover,the HLB of polymer is discussed specifically by changing the amount of AA.With the increase of AA,the HLB value of the polymer is increased accordingly.Besides,the demulsification performance of the co-polymer is also evaluated at different synthesis and demulsification conditions.It is showed that the maximum demulsification efficiency is 96%at 70?C for 60 min.The optimum concentration of demulsifier is 400 ppm when the amounts of AA and DVB are 1.4 g and 0.1 g,respectively.At last,the process of demulsification is showed under a microscope;the coalescence process of water droplets is indicated under the action of the demulsifier. 展开更多
关键词 EMULSION POLYMERIZATION Polymer DEMULSIFIER W/O Emulsion Demulsifying Efficiency Process of DEMULSIFICATION
下载PDF
Formation,stabilization and chemical demulsification of crude oil-in-water emulsions:A review 被引量:2
5
作者 Edith Yonguep Kashala Fabrice Kapiamba +1 位作者 Katende Jonathan Kabamba Mahabubur Chowdhury 《Petroleum Research》 2022年第4期459-472,共14页
The crude oil recovery process is frequently associated with the formation of stable emulsions due to factors such as turbulent flow in pipelines and the presence of surface-active substances that naturally occur in c... The crude oil recovery process is frequently associated with the formation of stable emulsions due to factors such as turbulent flow in pipelines and the presence of surface-active substances that naturally occur in crude oil.These emulsions are undesirable for the petroleum industry because their destruction/treatment adds to the overall production cost and causes the loss of valuable amounts of crude oil.Therefore,it is essential,for economic and environmental reasons,to optimize the crude oil demulsification process.The effective treatment of crude oil emulsions requires understanding of the process and factors leading to their formation and stabilization.In this sense,suitable treatment methods and possible preventive measures to avoid their formation can be employed.The present study reviews recent oilfield emulsion types and the factors responsible for their formation and stabilization.The different demulsification techniques employed were then extensively examined.Demulsification tech-niques include mechanical,thermal,electrical,and chemical methods with different demulsification mechanisms affected by many factors such as emulsions type and properties,demulsifiers characteris-tics,presence of solids stabilized emulsions,etc.The demulsification efficiency depends on the operating parameters of the process,the economics involved,and the environmental impact,which are the main factors considered in selecting a suitable demulsification technique.Future research on the demulsifi-cation of crude oil emulsions should focus on real crude oil emulsions studies at a pilot scale level,the effect of aging on crude oil emulsions,the combination of multiple demulsification techniques and their synergistic effects,and the use of natural,ecofriendly demulsifiers. 展开更多
关键词 Crude oil Enhanced oil recovery Emulsions STABILIZATION DEMULSIFICATION SURFACTANTS demulsifiers COALESCENCE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部