This paper described the first example of polyamidoamine dendrimers ester(PAMAM) used as a gel electrolyte with a short-chain polyethylene glycol (MPEG-400) as aplasticizer. The polymer films are solid and sticky. Bac...This paper described the first example of polyamidoamine dendrimers ester(PAMAM) used as a gel electrolyte with a short-chain polyethylene glycol (MPEG-400) as aplasticizer. The polymer films are solid and sticky. Background cyclic voltammetry (CV) shows apotential window between +0.7 and -0.7 V vs. Ag/AgCl. The voltammetry of ferrocene and7,7,8,8-tetracyanoquinodimethane (TCNQ) indicates that diffusion coefficients are in the range of10^(-8) -10^(-9) cm^2/s. Ionic conductivities are approximately 10^(-6) S/cm. Similar films usingdimethyl sulfoxide (DMSO) as a plasticizer instead of MPEG-400 have demonstrated ionicconductivities of 10^(-4) S/cm and reversible voltammetry. However, UV spectropho-tometry shows that70% of the DMSO is lost under vacuum, indicating the difficulty in quantifying the DMSO contentwhen exposed to vacuum.展开更多
In this work,functionalized carbon nanotubes(CNTs)using two polyamine polymers,polyethyleneimine(PEI)and polyamidoamine dendrimer(PAMAM),were investigated by thermal analysis in order to address preparation strategies...In this work,functionalized carbon nanotubes(CNTs)using two polyamine polymers,polyethyleneimine(PEI)and polyamidoamine dendrimer(PAMAM),were investigated by thermal analysis in order to address preparation strategies to obtain low cytotoxic compounds with the ability to conjugate micro-RNAs and,at the same time,to transfect efficiently endothelial cells.Thermogravimetric analysis(TGA)was coupled to chemometrics as a novel analytical strategy to characterize functionalized CNTs from different preparation conditions.In particular,two starting materials were considered:very small CNTs and carboxylated CNTs(CNT-COOH)in order to examine the affinity with polymers.Chemometrics permitted to compare results from TGA and to investigate the effect of a number of factors affecting the synthesis of coated nanotubes including a different amount of involved polymer and the time required for the suspension for a satisfactory and reproducible preparation procedure.The results demonstrated the effectiveness of TGA as a tool able to address synthesis of coated CNTs to be employed as efficient drug delivery vectors in biomedical applications.展开更多
In order to control the size and shape of Ag nanoparticles obtained by using poly(amidoamine) (PA- MAM) dendrimer as template, the complexation between Ag^+ ions and dendrimer studied extensively by UV-Vis spectr...In order to control the size and shape of Ag nanoparticles obtained by using poly(amidoamine) (PA- MAM) dendrimer as template, the complexation between Ag^+ ions and dendrimer studied extensively by UV-Vis spectroscopy and FTIR. After the Ag+/PAMAM demdrimer being reduced by direct chemical reduction, Ag (0) nanopartides was formed, whose structure and characterization were studied by UV-Vis spectroscopy, transmission electron microscopy (TEM) and electron diffraction (ED) respectively. The results reveal that Ag nanopartides is a kind of face center cubic crystal and its average size is 4.5 nm. The solubility and stability of the solution containing Ag nanopartides also indicate that dendrimer is a good kind of template, as well as a protective agent.展开更多
Superabsorbent hydrogels were prepared successfully from N-succinyl chitosan grafted poly(acrylic acid-co-acrylamide). The potassium persulfate(KPS), N, N'-methylenebisacrylamide(MBA) were used as the initiator...Superabsorbent hydrogels were prepared successfully from N-succinyl chitosan grafted poly(acrylic acid-co-acrylamide). The potassium persulfate(KPS), N, N'-methylenebisacrylamide(MBA) were used as the initiator and crosslinker, respectively. Fourier transform infrared spectroscopy(FTIR) and scanning electron microscopy(SEM) were used to confirm the porous network structure of superabsorbent hydrogel. The effects of reaction parameters on the swelling behaviors of the superabsorbent hydrogels were investigated. The results indicated that water absorbency increased first, and then decreased gradually with the increase in the contents of monomer(AA+AM), KPS, MBA or acrylamide. The product had excellent water absorbency of 1375 g/g in distilled water and 83 g/g in 0.9wt% NaCl solution. Simultaneously, the superabsorbent hydrogels were p H sensitive. The antibacterial activities of the hydrogels against Escherichia coli(E. coli) were improved effectively because of polyamidoamine(PAMAM) dendrimer absorbed in the hydrogels.展开更多
Organochlorine pesticides(OCPs)have received much attention due to their toxicity.Reliable methods to monitor their residues in the environment are needed.Here,magnetic polyamidoamine dendrimers were prepared by co-pr...Organochlorine pesticides(OCPs)have received much attention due to their toxicity.Reliable methods to monitor their residues in the environment are needed.Here,magnetic polyamidoamine dendrimers were prepared by co-precipitation,Michael addition,and amidation.The magnetic polyamidoamine dendrimers demonstrated good adsorption ability for OCPs—this feature was utilized to construct a sensitive tool for monitoring OCPs in water samples.The proposed method provided remarkable linearity from 0.1 to 500μg/L and satisfactory limits of detection from 0.012 to 0.029μg/L.The spiked recoveries of the four target analytes were 91.8%-103.5%with relative standard deviations less than 4.5%.The magnetic materials had good reusability.The results indicated that the resulting method was an efficient,easy,rapid,economical,and eco-friendly tool for monitoring OCPs in aqueous samples.展开更多
Tumor associated macrophages(TAMs)tend to exhibit tumor-promoting M2 phenotype and contribute to the development of immunosuppressive microenvironment of solid tumors.Reprograming TAMs from M2 into tumoricidal M1 phen...Tumor associated macrophages(TAMs)tend to exhibit tumor-promoting M2 phenotype and contribute to the development of immunosuppressive microenvironment of solid tumors.Reprograming TAMs from M2 into tumoricidal M1 phenotype is robust for stimulating tumor immunosuppressive microenvironment(TIME).In this study,we developed a poly(amidoamine)(PAMAM)derivative dendrimer(denoted as fourth generation-N,N-diethylaminoethyl(G4-DEEA))for efficient loading of Toll-like receptor 7 and 8(TLR7/8)agonist(R848)to remodel the TIME for potent cancer immunotherapy,G4-DEEA exhibited a high loading capacity of R848 up to 35.9 wt%by taking advantage of its dendritic structure.The resulting formulation(designated as G4-DEEA@R848)effectively polarized M2 macrophages into M1 phenotype in vitro,and improved the maturation and activation of antigen-presenting cells.In the 4T1 orthotopic breast cancer model,G4-DEEA@R848 showed a stronger tumor inhibitory effect than free drug.The mechanistic studies suggested that G4-DEEA@R848 could significantly stimulate the TIME by repolarizing TAMs into M1 phenotype,reducing the presence of immunosuppressive myeloid cells and increasing the infiltration of tumor cytotoxic T cells.This study provides a simple but effective dendrimer-based strategy to improve the formulation of R848 for improved cancer immunotherapy.展开更多
An ion-selective electrode(ISE)-based immunoassay has been innovatively designed for the sensitive detection of liver cancer biomarker(alpha-fetoprotein,AFP),using metal sulfide quantum dot(QD)-based nano labels.Cd S ...An ion-selective electrode(ISE)-based immunoassay has been innovatively designed for the sensitive detection of liver cancer biomarker(alpha-fetoprotein,AFP),using metal sulfide quantum dot(QD)-based nano labels.Cd S QDs-aggregated PAMAM dendrimer(QD-DE)was first synthesized and functionalized with polyclonal rabbit anti-human AFP antibodies.Thereafter,a sandwich immunoreaction was implemented on monoclonal mouse anti-human AFP antibody-coated microplate by using antibody-functionalized QD-DE as the secondary antibody.Accompanying the immunocomplex,subsequent potentiometric detection of cadmium ion dissolved from the QD-DE under acidic condition was conducted on a portable cadmium ion-selective electrode(Cd-ISE).Results revealed that the electrode potential of the Cd-ISE increased with the increment of AFP concentration from 0.1 to 100 ng m L^(-1)at a detection limit(LOD)of 68 pg m L^(-1).The relative standard deviations(RSD)were below9.09%and 10.54%for the intra-and inter-assay,respectively.Additionally,six human serum specimens were determined on CdISE-based immunosensor by using commercial human AFP ELISA kit as the reference,and gave good relationship between two methods.Importantly,Cd-ISE-based immunoassay offers the promise for simple and cost-effective screening of disease-related biomarkers.展开更多
A class of silica anchored Schiff base decorated polyamidoamine(PAMAM) dendrimers were synthesized for removing aqueous Cu(Ⅱ) and Ag(Ⅰ). The adsorption performance was investigated synthetically and the adsorption m...A class of silica anchored Schiff base decorated polyamidoamine(PAMAM) dendrimers were synthesized for removing aqueous Cu(Ⅱ) and Ag(Ⅰ). The adsorption performance was investigated synthetically and the adsorption mechanism was revealed. Results indicate the adsorption capacity depends on dendrimer generation, solution p H, contact time, temperature and initial metal ion concentration.The optimum adsorption pH is 6 for both metal ion. Adsorption kinetic suggests the adsorption can achieve equilibrium at 180 and 150 min for Cu(Ⅱ) and Ag(Ⅰ). The kinetic process is found to be in good agreement with pseudo-second-order model and film diffusion is the rate-controlling step. The adsorption isotherm indicates the adsorption is proceeded by monolayer behavior with chemical mechanism. These adsorbents exhibit competitive adsorption capacity as compared with other reported adsorbents. Theoretical calculation demonstrates the participation of hydroxyl, carbonyl, and amide groups during the adsorption of Cu(Ⅱ), while hydroxyl and amide groups are mainly responsible for capturing Ag(Ⅰ).展开更多
This present work aims to functionalize poly(amidoamine) (PAMAM) dendrimers with various reported adhesive peptides, including Arg-Gly-Asp (RGD), Tyr-lle-Gly-Ser-Arg (YIGSR), and Ile-Lys-Val-Ala-Val (IKVAV) ...This present work aims to functionalize poly(amidoamine) (PAMAM) dendrimers with various reported adhesive peptides, including Arg-Gly-Asp (RGD), Tyr-lle-Gly-Ser-Arg (YIGSR), and Ile-Lys-Val-Ala-Val (IKVAV) for enhancing cell responses. The RGD, YIGSR, or IKVAV functionalized PAMAM coated substrate could promote cell adhesion of bone marrow mesenchymal stem cells (BMSCs) within 1 h after incubation. The neurite differentiation and proliferation of pheochromocytoma (PC12) cells were also significantly enhanced after culturing on the peptide functionalized PAMAM dendrimers for two and foul days. This peptide functionalized PAMAM dendrimers are considered as the potential candidates for various tissue engineering applications.展开更多
Schiff base functionalized polyamidoamine(PAMAM) dendrimer/silica were prepared for the adsorption of aqueous Mn(Ⅱ) and Co(Ⅱ).The effects that influence the adsorption were investigated systematically and the adsorp...Schiff base functionalized polyamidoamine(PAMAM) dendrimer/silica were prepared for the adsorption of aqueous Mn(Ⅱ) and Co(Ⅱ).The effects that influence the adsorption were investigated systematically and the adsorption mechanism was illustrated by theoretical calculation.The optimum adsorption pH are 4 and 6 for Mn(II) and Co(Ⅱ).Adsorption kinetics follow pseudo-second-order model and the ratecontrolling step is film diffusion process.Adsorption isotherm shows that high initial metal ion concentration facilitates the uptake of metal ions.The adsorption capacity increases first and then decreases in the temperature range of 15-35℃.Density functional theory(DFT) calculation demonstrates that Schiff base functionalized PAMAM dendrimer tends to coordinate Mn(Ⅱ) and Co(Ⅱ) with the oxygen atoms of hydroxyl and carbonyl groups,nitrogen of tertiary amine and imino groups.The imino and tertiary amine groups mainly dominate the adsorption.The reproducibility of the adsorbents indicates they can be regenerated by 5% thiourea and 0.5 mol/L HNO_(3) solution efficiently.展开更多
Using a successive method, PAMAM dendrimer-encapsulated bimetallic PdPt nanoparticles have been successfully prepared with core-shell structures (Pd@Pt DENs). Evidenced by UV-vis spectra, high resolution trans- miss...Using a successive method, PAMAM dendrimer-encapsulated bimetallic PdPt nanoparticles have been successfully prepared with core-shell structures (Pd@Pt DENs). Evidenced by UV-vis spectra, high resolution trans- mission electron microscopy, and X-ray energy dispersive spectroscopy (EDS), the obtained Pd@Pt DENs are monodispersed and located inside the cavity of dendrimers, and they show a different structure from monometallic Pt or Pd and alloy PdPt DENs. The core-shell structure of Pd@Pt DENs is further confirmed by infrared measure- ments with carbon monoxide (IR-CO) probe. In order to prepare Pd@Pt DENs, a required Pd/Pt ratio of 1 : 2 is de- termined for the Pt shell to cover the Pd core completely. Finally, a mechanism for the formation of Pd@Pt DENs is proposed.展开更多
基金This work was financially supported by the National Natural Science Foundation of China (No. 29875018) the Natural Science Foundation of Gansu Province (No. ZS991-A25-008-Z)the Doctorate Foundation of Northwestern Politech-nical University (No. CX200
文摘This paper described the first example of polyamidoamine dendrimers ester(PAMAM) used as a gel electrolyte with a short-chain polyethylene glycol (MPEG-400) as aplasticizer. The polymer films are solid and sticky. Background cyclic voltammetry (CV) shows apotential window between +0.7 and -0.7 V vs. Ag/AgCl. The voltammetry of ferrocene and7,7,8,8-tetracyanoquinodimethane (TCNQ) indicates that diffusion coefficients are in the range of10^(-8) -10^(-9) cm^2/s. Ionic conductivities are approximately 10^(-6) S/cm. Similar films usingdimethyl sulfoxide (DMSO) as a plasticizer instead of MPEG-400 have demonstrated ionicconductivities of 10^(-4) S/cm and reversible voltammetry. However, UV spectropho-tometry shows that70% of the DMSO is lost under vacuum, indicating the difficulty in quantifying the DMSO contentwhen exposed to vacuum.
基金The authors thank the Italian Ministry of Health for funding this research(Progetto Ricerca Finalizzata PE-2011-02347026).
文摘In this work,functionalized carbon nanotubes(CNTs)using two polyamine polymers,polyethyleneimine(PEI)and polyamidoamine dendrimer(PAMAM),were investigated by thermal analysis in order to address preparation strategies to obtain low cytotoxic compounds with the ability to conjugate micro-RNAs and,at the same time,to transfect efficiently endothelial cells.Thermogravimetric analysis(TGA)was coupled to chemometrics as a novel analytical strategy to characterize functionalized CNTs from different preparation conditions.In particular,two starting materials were considered:very small CNTs and carboxylated CNTs(CNT-COOH)in order to examine the affinity with polymers.Chemometrics permitted to compare results from TGA and to investigate the effect of a number of factors affecting the synthesis of coated nanotubes including a different amount of involved polymer and the time required for the suspension for a satisfactory and reproducible preparation procedure.The results demonstrated the effectiveness of TGA as a tool able to address synthesis of coated CNTs to be employed as efficient drug delivery vectors in biomedical applications.
文摘In order to control the size and shape of Ag nanoparticles obtained by using poly(amidoamine) (PA- MAM) dendrimer as template, the complexation between Ag^+ ions and dendrimer studied extensively by UV-Vis spectroscopy and FTIR. After the Ag+/PAMAM demdrimer being reduced by direct chemical reduction, Ag (0) nanopartides was formed, whose structure and characterization were studied by UV-Vis spectroscopy, transmission electron microscopy (TEM) and electron diffraction (ED) respectively. The results reveal that Ag nanopartides is a kind of face center cubic crystal and its average size is 4.5 nm. The solubility and stability of the solution containing Ag nanopartides also indicate that dendrimer is a good kind of template, as well as a protective agent.
基金Funded by the National Natural Science Foundation of China(Nos.51303145,51273156,and 51373130)
文摘Superabsorbent hydrogels were prepared successfully from N-succinyl chitosan grafted poly(acrylic acid-co-acrylamide). The potassium persulfate(KPS), N, N'-methylenebisacrylamide(MBA) were used as the initiator and crosslinker, respectively. Fourier transform infrared spectroscopy(FTIR) and scanning electron microscopy(SEM) were used to confirm the porous network structure of superabsorbent hydrogel. The effects of reaction parameters on the swelling behaviors of the superabsorbent hydrogels were investigated. The results indicated that water absorbency increased first, and then decreased gradually with the increase in the contents of monomer(AA+AM), KPS, MBA or acrylamide. The product had excellent water absorbency of 1375 g/g in distilled water and 83 g/g in 0.9wt% NaCl solution. Simultaneously, the superabsorbent hydrogels were p H sensitive. The antibacterial activities of the hydrogels against Escherichia coli(E. coli) were improved effectively because of polyamidoamine(PAMAM) dendrimer absorbed in the hydrogels.
基金supported by the National Natural Science Foundation of China(No.21677177)Science Foundation of China University of Petroleum-Beijing(No.2462020XKJS04)。
文摘Organochlorine pesticides(OCPs)have received much attention due to their toxicity.Reliable methods to monitor their residues in the environment are needed.Here,magnetic polyamidoamine dendrimers were prepared by co-precipitation,Michael addition,and amidation.The magnetic polyamidoamine dendrimers demonstrated good adsorption ability for OCPs—this feature was utilized to construct a sensitive tool for monitoring OCPs in water samples.The proposed method provided remarkable linearity from 0.1 to 500μg/L and satisfactory limits of detection from 0.012 to 0.029μg/L.The spiked recoveries of the four target analytes were 91.8%-103.5%with relative standard deviations less than 4.5%.The magnetic materials had good reusability.The results indicated that the resulting method was an efficient,easy,rapid,economical,and eco-friendly tool for monitoring OCPs in aqueous samples.
基金supported by National Key R&D Program of China(No.2017YFA0205600)Guangdong Natural Science Funds for Distinguished Young Scholar(No.2017A030306018)+2 种基金National Natural Science Foundation of China(Nos.51922043 and 31771091)Guangdong Provincial Programs(Nos.2017ZT07S054 and 2017GC010304)the Science and Technology Program of Guangzhou(No.201902020018),and Fundamental Research Funds for Central Universities.
文摘Tumor associated macrophages(TAMs)tend to exhibit tumor-promoting M2 phenotype and contribute to the development of immunosuppressive microenvironment of solid tumors.Reprograming TAMs from M2 into tumoricidal M1 phenotype is robust for stimulating tumor immunosuppressive microenvironment(TIME).In this study,we developed a poly(amidoamine)(PAMAM)derivative dendrimer(denoted as fourth generation-N,N-diethylaminoethyl(G4-DEEA))for efficient loading of Toll-like receptor 7 and 8(TLR7/8)agonist(R848)to remodel the TIME for potent cancer immunotherapy,G4-DEEA exhibited a high loading capacity of R848 up to 35.9 wt%by taking advantage of its dendritic structure.The resulting formulation(designated as G4-DEEA@R848)effectively polarized M2 macrophages into M1 phenotype in vitro,and improved the maturation and activation of antigen-presenting cells.In the 4T1 orthotopic breast cancer model,G4-DEEA@R848 showed a stronger tumor inhibitory effect than free drug.The mechanistic studies suggested that G4-DEEA@R848 could significantly stimulate the TIME by repolarizing TAMs into M1 phenotype,reducing the presence of immunosuppressive myeloid cells and increasing the infiltration of tumor cytotoxic T cells.This study provides a simple but effective dendrimer-based strategy to improve the formulation of R848 for improved cancer immunotherapy.
基金supported by the National Natural Science Foundation of China (21675029, 21665009, 21475025)the Key Joint Project for Health Education of Fujian Province (WKJ2016-2-15)the Program for Changjiang Scholars and Innovative Research Team in University (IRT15R11)
文摘An ion-selective electrode(ISE)-based immunoassay has been innovatively designed for the sensitive detection of liver cancer biomarker(alpha-fetoprotein,AFP),using metal sulfide quantum dot(QD)-based nano labels.Cd S QDs-aggregated PAMAM dendrimer(QD-DE)was first synthesized and functionalized with polyclonal rabbit anti-human AFP antibodies.Thereafter,a sandwich immunoreaction was implemented on monoclonal mouse anti-human AFP antibody-coated microplate by using antibody-functionalized QD-DE as the secondary antibody.Accompanying the immunocomplex,subsequent potentiometric detection of cadmium ion dissolved from the QD-DE under acidic condition was conducted on a portable cadmium ion-selective electrode(Cd-ISE).Results revealed that the electrode potential of the Cd-ISE increased with the increment of AFP concentration from 0.1 to 100 ng m L^(-1)at a detection limit(LOD)of 68 pg m L^(-1).The relative standard deviations(RSD)were below9.09%and 10.54%for the intra-and inter-assay,respectively.Additionally,six human serum specimens were determined on CdISE-based immunosensor by using commercial human AFP ELISA kit as the reference,and gave good relationship between two methods.Importantly,Cd-ISE-based immunoassay offers the promise for simple and cost-effective screening of disease-related biomarkers.
基金Natural Science Foundation of Shandong Province(No.ZR2018MB039)is acknowledged.
文摘A class of silica anchored Schiff base decorated polyamidoamine(PAMAM) dendrimers were synthesized for removing aqueous Cu(Ⅱ) and Ag(Ⅰ). The adsorption performance was investigated synthetically and the adsorption mechanism was revealed. Results indicate the adsorption capacity depends on dendrimer generation, solution p H, contact time, temperature and initial metal ion concentration.The optimum adsorption pH is 6 for both metal ion. Adsorption kinetic suggests the adsorption can achieve equilibrium at 180 and 150 min for Cu(Ⅱ) and Ag(Ⅰ). The kinetic process is found to be in good agreement with pseudo-second-order model and film diffusion is the rate-controlling step. The adsorption isotherm indicates the adsorption is proceeded by monolayer behavior with chemical mechanism. These adsorbents exhibit competitive adsorption capacity as compared with other reported adsorbents. Theoretical calculation demonstrates the participation of hydroxyl, carbonyl, and amide groups during the adsorption of Cu(Ⅱ), while hydroxyl and amide groups are mainly responsible for capturing Ag(Ⅰ).
基金financially supported by the NSF-ECCS 1509760NSF EPSCoR RII Track 1 cooperative agreement awarded to the University of South Carolina (NSF EPSCoR Cooperative Agreement No. EPS-0903795)
文摘This present work aims to functionalize poly(amidoamine) (PAMAM) dendrimers with various reported adhesive peptides, including Arg-Gly-Asp (RGD), Tyr-lle-Gly-Ser-Arg (YIGSR), and Ile-Lys-Val-Ala-Val (IKVAV) for enhancing cell responses. The RGD, YIGSR, or IKVAV functionalized PAMAM coated substrate could promote cell adhesion of bone marrow mesenchymal stem cells (BMSCs) within 1 h after incubation. The neurite differentiation and proliferation of pheochromocytoma (PC12) cells were also significantly enhanced after culturing on the peptide functionalized PAMAM dendrimers for two and foul days. This peptide functionalized PAMAM dendrimers are considered as the potential candidates for various tissue engineering applications.
基金the National Natural Science Foundation of China(No.21307053)Natural Science Foundation of Shandong Province(No.ZR2018MB039)Science and Technology Research Program of Yantai(No.2017ZH060)。
文摘Schiff base functionalized polyamidoamine(PAMAM) dendrimer/silica were prepared for the adsorption of aqueous Mn(Ⅱ) and Co(Ⅱ).The effects that influence the adsorption were investigated systematically and the adsorption mechanism was illustrated by theoretical calculation.The optimum adsorption pH are 4 and 6 for Mn(II) and Co(Ⅱ).Adsorption kinetics follow pseudo-second-order model and the ratecontrolling step is film diffusion process.Adsorption isotherm shows that high initial metal ion concentration facilitates the uptake of metal ions.The adsorption capacity increases first and then decreases in the temperature range of 15-35℃.Density functional theory(DFT) calculation demonstrates that Schiff base functionalized PAMAM dendrimer tends to coordinate Mn(Ⅱ) and Co(Ⅱ) with the oxygen atoms of hydroxyl and carbonyl groups,nitrogen of tertiary amine and imino groups.The imino and tertiary amine groups mainly dominate the adsorption.The reproducibility of the adsorbents indicates they can be regenerated by 5% thiourea and 0.5 mol/L HNO_(3) solution efficiently.
文摘Using a successive method, PAMAM dendrimer-encapsulated bimetallic PdPt nanoparticles have been successfully prepared with core-shell structures (Pd@Pt DENs). Evidenced by UV-vis spectra, high resolution trans- mission electron microscopy, and X-ray energy dispersive spectroscopy (EDS), the obtained Pd@Pt DENs are monodispersed and located inside the cavity of dendrimers, and they show a different structure from monometallic Pt or Pd and alloy PdPt DENs. The core-shell structure of Pd@Pt DENs is further confirmed by infrared measure- ments with carbon monoxide (IR-CO) probe. In order to prepare Pd@Pt DENs, a required Pd/Pt ratio of 1 : 2 is de- termined for the Pt shell to cover the Pd core completely. Finally, a mechanism for the formation of Pd@Pt DENs is proposed.