The irrationality of existing phase field model is analyzed and a modified phase-field model is proposed for polymer crystal growth, in which the parameters are obtained from real materials and very simple to use, and...The irrationality of existing phase field model is analyzed and a modified phase-field model is proposed for polymer crystal growth, in which the parameters are obtained from real materials and very simple to use, and most importantly, no paradoxical parameters appeared in the model. Moreover, it can simulate different microstructure patterns owing to the use of a new different free energy function for the simulation of morphologies of polymer. The new free energy function considers both the cases of T〈Tm and T≥Tm, which is more reasonable than that in published literatures that all ignored the T≥Tm case. In order to show the validity of the modified model, the finite difference method is used to solve the model and different crystallization morphologies during the solidification process of isotactic polystyrene are obtained under different conditions. Numerical results show that the growth rate of the initial secondary arms is obviously increased as the anisotropy strength increases. But the anisotropy strength seems to have no apparent effect on the global growth rate. The whole growth process of the dendrite depends mainly upon the latent heat and the latent heat has a direct effect on the tip radius and tip velocity of side branches.展开更多
A vectorization analysis technique for crystal growth and microstructure development in single-crystal weld was developed in our previous work. Based on the vectorization method, crystal growth and stray grain distrib...A vectorization analysis technique for crystal growth and microstructure development in single-crystal weld was developed in our previous work. Based on the vectorization method, crystal growth and stray grain distribution in laser surface remelting of single crystal superalloy CMSX-4 were investigated in com- bination of simulations with experimental observations. The energy distribution of laser was taken into consideration in this research. The experimental results demonstrate that the simulation model applies well in the prediction of dendrite growth direction. Moreover, the prediction of stray grain distribution works well except for the region of dendrites growing along the [100] direction.展开更多
基金This work is supported by the National Natural Science Foundation of China (No.11402210), the Natural Science Foundation of Shanxi Province (No.2012011019-2), and the Doctoral Fund of Taiyuan University of Science and Technology (No.20152024).
文摘The irrationality of existing phase field model is analyzed and a modified phase-field model is proposed for polymer crystal growth, in which the parameters are obtained from real materials and very simple to use, and most importantly, no paradoxical parameters appeared in the model. Moreover, it can simulate different microstructure patterns owing to the use of a new different free energy function for the simulation of morphologies of polymer. The new free energy function considers both the cases of T〈Tm and T≥Tm, which is more reasonable than that in published literatures that all ignored the T≥Tm case. In order to show the validity of the modified model, the finite difference method is used to solve the model and different crystallization morphologies during the solidification process of isotactic polystyrene are obtained under different conditions. Numerical results show that the growth rate of the initial secondary arms is obviously increased as the anisotropy strength increases. But the anisotropy strength seems to have no apparent effect on the global growth rate. The whole growth process of the dendrite depends mainly upon the latent heat and the latent heat has a direct effect on the tip radius and tip velocity of side branches.
基金financially supported by the National Natural Science Foundation of China (NSFC) under grant Nos. 51401210 and 51271186the National High Technology Research and Development Program (863 Program) of China under grant No. 2014AA041701
文摘A vectorization analysis technique for crystal growth and microstructure development in single-crystal weld was developed in our previous work. Based on the vectorization method, crystal growth and stray grain distribution in laser surface remelting of single crystal superalloy CMSX-4 were investigated in com- bination of simulations with experimental observations. The energy distribution of laser was taken into consideration in this research. The experimental results demonstrate that the simulation model applies well in the prediction of dendrite growth direction. Moreover, the prediction of stray grain distribution works well except for the region of dendrites growing along the [100] direction.