A new type of dendritic polymer, named dendronized hyperbranched polymer (DHP), was prepared successfully by the macro-monomer approach. Thanks to the perfect 3D isolation effects, DHPG1 exhibited good NLO property wi...A new type of dendritic polymer, named dendronized hyperbranched polymer (DHP), was prepared successfully by the macro-monomer approach. Thanks to the perfect 3D isolation effects, DHPG1 exhibited good NLO property with d 33 value of 133 pm/V, higher than its analogues of dendronized polymer and dendrimer, and its stability of NLO effect was also enhanced.展开更多
Large nonlinear optical(NLO) coefficient and good stability, two essential factors to evaluate second-order NLO materials, are difficult to be achieved in one molecule simultaneously. Herein, by utilizing the concept ...Large nonlinear optical(NLO) coefficient and good stability, two essential factors to evaluate second-order NLO materials, are difficult to be achieved in one molecule simultaneously. Herein, by utilizing the concept of "isolation chromophore", "isolation group" and dendritic structure, a dendritic molecule D-NS and a dendronized hyperbranched polymer DHP-NS are prepared to investigate their structure-property relationship. For the small dendritic molecule D-NS, it exhibits a high d33 value of 140 pm/V.But this value can be easily dropped when the temperature is higher than 50 °C, which extremely limits its real application. After introducing D-NS into a dendronized hyperbranched polymer chains, the obtained DHP-NS also shows a high d33 value of101 pm/V, but much better stability than D-NS. Even when its thin film was heated to 120 °C, no obvious decay can be observed in the d33 value of DHP-NS. This work demonstrates an effective strategy to realize both large NLO effect and good stability simultaneously.展开更多
Dendronized hyperbranched polymer (DHP) is a new kind of polymer, which combines the advantages of dendrimers and hy- perbranched polymers. In this work, two dendronized hyperbranched polymers, DttPG0 and DHPG1, wer...Dendronized hyperbranched polymer (DHP) is a new kind of polymer, which combines the advantages of dendrimers and hy- perbranched polymers. In this work, two dendronized hyperbranched polymers, DttPG0 and DHPG1, were successfully pre- pared through the simple "A3+B2" type Sonogashira coupling reaction. The nonlinear optical (NLO) effects of DHPG0 and DItPG1, characterized by the d33 values, were 183 and 220 pm V-1 respectively, higher than those of their analogues of den- dronized polymers and dendrimers, thanks to the special topological structure. Also, the obtained polymers displayed excellent solubility, good processability, and high thermal stability.展开更多
基金supported by the National Natural Science Foundation of China(21034006)
文摘A new type of dendritic polymer, named dendronized hyperbranched polymer (DHP), was prepared successfully by the macro-monomer approach. Thanks to the perfect 3D isolation effects, DHPG1 exhibited good NLO property with d 33 value of 133 pm/V, higher than its analogues of dendronized polymer and dendrimer, and its stability of NLO effect was also enhanced.
基金supported by the Startup Research Fund of Zhengzhou University(1411320006)the National Natural Science Foundation of China(21325416,21274133)
文摘Large nonlinear optical(NLO) coefficient and good stability, two essential factors to evaluate second-order NLO materials, are difficult to be achieved in one molecule simultaneously. Herein, by utilizing the concept of "isolation chromophore", "isolation group" and dendritic structure, a dendritic molecule D-NS and a dendronized hyperbranched polymer DHP-NS are prepared to investigate their structure-property relationship. For the small dendritic molecule D-NS, it exhibits a high d33 value of 140 pm/V.But this value can be easily dropped when the temperature is higher than 50 °C, which extremely limits its real application. After introducing D-NS into a dendronized hyperbranched polymer chains, the obtained DHP-NS also shows a high d33 value of101 pm/V, but much better stability than D-NS. Even when its thin film was heated to 120 °C, no obvious decay can be observed in the d33 value of DHP-NS. This work demonstrates an effective strategy to realize both large NLO effect and good stability simultaneously.
基金supported by the National Natural Science Foundation of China(21325416)
文摘Dendronized hyperbranched polymer (DHP) is a new kind of polymer, which combines the advantages of dendrimers and hy- perbranched polymers. In this work, two dendronized hyperbranched polymers, DttPG0 and DHPG1, were successfully pre- pared through the simple "A3+B2" type Sonogashira coupling reaction. The nonlinear optical (NLO) effects of DHPG0 and DItPG1, characterized by the d33 values, were 183 and 220 pm V-1 respectively, higher than those of their analogues of den- dronized polymers and dendrimers, thanks to the special topological structure. Also, the obtained polymers displayed excellent solubility, good processability, and high thermal stability.