期刊文献+
共找到1,276篇文章
< 1 2 64 >
每页显示 20 50 100
Influence of La-Ce Mischmetal on Dendritical Arm Space and Ultimate Tensile Strength in ZL105 Alloys 被引量:1
1
作者 李华基 李革胜 刘昌明 《Journal of Rare Earths》 SCIE EI CAS CSCD 2000年第1期43-45,共3页
The influence of pure La, pure Ce, (La+Ce) mischmetal on the dendritical arm space(LDAS) of ZL105 alloy in cylinderical casting was studied. The effects of adding amount of (La+ Ce) mischmetal on LDAs and ultimate te... The influence of pure La, pure Ce, (La+Ce) mischmetal on the dendritical arm space(LDAS) of ZL105 alloy in cylinderical casting was studied. The effects of adding amount of (La+ Ce) mischmetal on LDAs and ultimate tensile strength(b) were investigated, and the relationship between b and LDAS was founded. (La+Ce) mischmetal has stronger ability to refine LDAs than pure La or pure Ce. The proper adding amounts of it is 0.15% (mass fraction). LDAs has a remarkable effect on ah of casting, which can be predicted by the regression equation obtained in this work. 展开更多
关键词 rare earths Al-Si alloy dendritical arm space ultimate tensile strength
下载PDF
Trend of Developing Aqueous Liquid and Gel Electrolytes for Sustainable,Safe,and High‑Performance Li‑Ion Batteries 被引量:2
2
作者 Donghwan Ji Jaeyun Kim 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期17-34,共18页
Current lithium-ion batteries(LIBs)rely on organic liquid electrolytes that pose significant risks due to their flammability and toxicity.The potential for environmental pollution and explosions resulting from battery... Current lithium-ion batteries(LIBs)rely on organic liquid electrolytes that pose significant risks due to their flammability and toxicity.The potential for environmental pollution and explosions resulting from battery damage or fracture is a critical concern.Water-based(aqueous)electrolytes have been receiving attention as an alternative to organic electrolytes.However,a narrow electrochemicalstability window,water decomposition,and the consequent low battery operating voltage and energy density hinder the practical use of aqueous electrolytes.Therefore,developing novel aqueous electrolytes for sustainable,safe,high-performance LIBs remains challenging.This Review first commences by summarizing the roles and requirements of electrolytes–separators and then delineates the progression of aqueous electrolytes for LIBs,encompassing aqueous liquid and gel electrolyte development trends along with detailed principles of the electrolytes.These aqueous electrolytes are progressed based on strategies using superconcentrated salts,concentrated diluents,polymer additives,polymer networks,and artificial passivation layers,which are used for suppressing water decomposition and widening the electrochemical stability window of water of the electrolytes.In addition,this Review discusses potential strategies for the implementation of aqueous Li-metal batteries with improved electrolyte–electrode interfaces.A comprehensive understanding of each strategy in the aqueous system will assist in the design of an aqueous electrolyte and the development of sustainable and safe high-performance batteries. 展开更多
关键词 Lithium-ion battery(LIB) Aqueous electrolyte Gel electrolyte Electrochemical stability window Li dendrite
下载PDF
PCDH17 restricts dendritic spine morphogenesis by regulating ROCK2-dependent control of the actin cytoskeleton,modulating emotional behavior 被引量:1
3
作者 Laidong Yu Fangfang Zeng +14 位作者 Mengshu Fan Kexuan Zhang Jingjing Duan Yalu Tan Panlin Liao Jin Wen Chenyu Wang Meilin Wang Jialong Yuan Xinxin Pang Yan Huang Yangzhou Zhang Jia-Da Li Zhuohua Zhang Zhonghua Hu 《Zoological Research》 SCIE CSCD 2024年第3期535-550,共16页
Proper regulation of synapse formation and elimination is critical for establishing mature neuronal circuits and maintaining brain function.Synaptic abnormalities,such as defects in the density and morphology of posts... Proper regulation of synapse formation and elimination is critical for establishing mature neuronal circuits and maintaining brain function.Synaptic abnormalities,such as defects in the density and morphology of postsynaptic dendritic spines,underlie the pathology of various neuropsychiatric disorders.Protocadherin 17(PCDH17)is associated with major mood disorders,including bipolar disorder and depression.However,the molecular mechanisms by which PCDH17 regulates spine number,morphology,and behavior remain elusive.In this study,we found that PCDH17 functions at postsynaptic sites,restricting the number and size of dendritic spines in excitatory neurons.Selective overexpression of PCDH17 in the ventral hippocampal CA1 results in spine loss and anxiety-and depression-like behaviors in mice.Mechanistically,PCDH17 interacts with actin-relevant proteins and regulates actin filament(F-actin)organization.Specifically,PCDH17 binds to ROCK2,increasing its expression and subsequently enhancing the activity of downstream targets such as LIMK1 and the phosphorylation of cofilin serine-3(Ser3).Inhibition of ROCK2 activity with belumosudil(KD025)ameliorates the defective F-actin organization and spine structure induced by PCDH17 overexpression,suggesting that ROCK2 mediates the effects of PCDH17 on F-actin content and spine development.Hence,these findings reveal a novel mechanism by which PCDH17 regulates synapse development and behavior,providing pathological insights into the neurobiological basis of mood disorders. 展开更多
关键词 Synapse development Dendritic spine Mood disorder Actin cytoskeleton Animal behavior
下载PDF
Ethanol changes Nestin-promoter induced neural stem cells to disturb newborn dendritic spine remodeling in the hippocampus of mice 被引量:1
4
作者 Guixiang Wang Wenjia Wang +7 位作者 Ye Zhang Xiaoying Gou Qingqing Zhang Yanmiao Huang Kuo Zhang Haotian Zhang Jingyu Yang Yuting Li 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期416-424,共9页
Adolescent binge drinking leads to long-lasting disorders of the adult central nervous system,particularly aberrant hippocampal neurogenesis.In this study,we applied in vivo fluorescent tracing using NestinCreERT2::Ro... Adolescent binge drinking leads to long-lasting disorders of the adult central nervous system,particularly aberrant hippocampal neurogenesis.In this study,we applied in vivo fluorescent tracing using NestinCreERT2::Rosa26-tdTomato mice and analyzed the endogenous neurogenesis lineage progression of neural stem cells(NSCs)and dendritic spine formation of newborn neurons in the subgranular zone of the dentate gyrus.We found abnormal orientation of tamoxifen-induced tdTomato+(tdTom^(+))NSCs in adult mice 2 months after treatment with EtOH(5.0 g/kg,i.p.)for 7 consecutive days.EtOH markedly inhibited tdTom^(+)NSCs activation and hippocampal neurogenesis in mouse dentate gyrus from adolescence to adulthood.EtOH(100 mM)also significantly inhibited the proliferation to 39.2%and differentiation of primary NSCs in vitro.Adult mice exposed to EtOH also exhibited marked inhibitions in dendritic spine growth and newborn neuron maturation in the dentate gyrus,which was partially reversed by voluntary running or inhibition of the mammalian target of rapamycinenhancer of zeste homolog 2 pathway.In vivo tracing revealed that EtOH induced abnormal orientation of tdTom+NSCs and spatial misposition defects of newborn neurons,thus causing the disturbance of hippocampal neurogenesis and dendritic spine remodeling in mice. 展开更多
关键词 ADOLESCENCE ADULTHOOD ETHANOL dentate gyrus EZH2 in vivo tracing lineage progression mTOR neural stem cell newborn dendritic spine newborn neurons
下载PDF
Construction of Dynamic Alloy Interfaces for Uniform Li Deposition in Li-Metal Batteries 被引量:1
5
作者 Qingwen Li Yulu Liu +7 位作者 Ziheng Zhang Jinjie Chen Zelong Yang Qibo Deng Alexander V.Mumyatov Pavel A.Troshin Guang He Ning Hu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期64-71,共8页
It is well accepted that a lithiophilic interface can effectively regulate Li deposition behaviors,but the influence of the lithiophilic interface is gradually diminished upon continuous Li deposition that completely ... It is well accepted that a lithiophilic interface can effectively regulate Li deposition behaviors,but the influence of the lithiophilic interface is gradually diminished upon continuous Li deposition that completely isolates Li from the lithiophilic metals.Herein,we perform in-depth studies on the creation of dynamic alloy interfaces upon Li deposition,arising from the exceptionally high diffusion coefficient of Hg in the amalgam solid solution.As a comparison,other metals such as Au,Ag,and Zn have typical diffusion coefficients of 10-20 orders of magnitude lower than that of Hg in the similar solid solution phases.This difference induces compact Li deposition pattern with an amalgam substrate even with a high areal capacity of 55 mAh cm^(-2).This finding provides new insight into the rational design of Li anode substrate for the stable cycling of Li metal batteries. 展开更多
关键词 diffusion coefficient dynamic alloy interfaces Li dendrites Li solid solution uniform Li deposition
下载PDF
Blastic plasmacytoid dendritic cell neoplasm:Two case reports 被引量:1
6
作者 Yi-Qian Ma Zhan Sun +1 位作者 Yu-Mei Li Hui Xu 《World Journal of Clinical Oncology》 2024年第9期1207-1214,共8页
BACKGROUND Blastic plasmacytoid dendritic cell tumor(BPDCN)is a rare and highly invasive lymphohematopoietic tumor that originates from plasmacytoid dendritic cells.BPDCN has an extremely poor prognosis.Skin lesions a... BACKGROUND Blastic plasmacytoid dendritic cell tumor(BPDCN)is a rare and highly invasive lymphohematopoietic tumor that originates from plasmacytoid dendritic cells.BPDCN has an extremely poor prognosis.Skin lesions are usually the first manifestation of BPDCN,although the tumor may also invade the bone marrow,lymph nodes,peripheral blood,and other parts of the body,leading to several other manifestations,requiring further differentiation through skin biopsy and immunohistochemistry.CASE SUMMARY In the present paper,the cases of 2 patients diagnosed with BPDCN are discussed.The immunohistochemistry analysis of these 2 patients revealed positivity for CD4,CD56,and CD123.Currently,no standard chemotherapy regimen is available for BPDCN.Therefore,intensive therapy for acute lymphoblastic leukemia was applied as the treatment method for these 2 cases.CONCLUSION Although allogeneic bone marrow transplantation could be further effective in prolonging the median survival the ultimate prognosis was unfavorable.Future treatment modalities tailored for elderly patients will help prolong survival. 展开更多
关键词 Blastic plasmacytoid dendritic cell neoplasm SKIN CD4 CD56 CD123 Venetoclax Case report
下载PDF
Growth and inhibition of zinc anode dendrites in Zn-air batteries:Model and experiment
7
作者 Cuiping He Qingyi Gou +6 位作者 Yanqing Hou Jianguo Wang Xiang You Ni Yang Lin Tian Gang Xie Yuanliang Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期268-281,共14页
Zinc(Zn)-air batteries are widely used in secondary battery research owing to their high theoretical energy density,good electrochemical reversibility,stable discharge performance,and low cost of the anode active mate... Zinc(Zn)-air batteries are widely used in secondary battery research owing to their high theoretical energy density,good electrochemical reversibility,stable discharge performance,and low cost of the anode active material Zn.However,the Zn anode also leads to many challenges,including dendrite growth,deformation,and hydrogen precipitation self-corrosion.In this context,Zn dendrite growth has a greater impact on the cycle lives.In this dissertation,a dendrite growth model for a Zn-air battery was established based on electrochemical phase field theory,and the effects of the charging time,anisotropy strength,and electrolyte temperature on the morphology and growth height of Zn dendrites were studied.A series of experiments was designed with different gradient influencing factors in subsequent experiments to verify the theoretical simulations,including elevated electrolyte temperatures,flowing electrolytes,and pulsed charging.The simulation results show that the growth of Zn dendrites is controlled mainly by diffusion and mass transfer processes,whereas the electrolyte temperature,flow rate,and interfacial energy anisotropy intensity are the main factors.The experimental results show that an optimal electrolyte temperature of 343.15 K,an optimal electrolyte flow rate of 40 ml·min^(-1),and an effective pulse charging mode. 展开更多
关键词 Zn-air battery Zinc anode Zinc dendrite Simulated dendrite growth Inhibit dendrite growth Phase-field model
下载PDF
Multifunctional SnO_(2) QDs/MXene Heterostructures as Laminar Interlayers for Improved Polysulfide Conversion and Lithium Plating Behavior
8
作者 Shungui Deng Weiwei Sun +4 位作者 Jiawei Tang Mohammad Jafarpour Frank Nüesch Jakob Heier Chuanfang Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期156-169,共14页
Poor cycling stability in lithium–sulfur(Li–S)batteries necessitates advanced electrode/electrolyte design and innovative interlayer architectures.Heterogeneous catalysis has emerged as a promising approach,leveragi... Poor cycling stability in lithium–sulfur(Li–S)batteries necessitates advanced electrode/electrolyte design and innovative interlayer architectures.Heterogeneous catalysis has emerged as a promising approach,leveraging the adsorption and catalytic performance on lithium polysulfides(LiPSs)to inhibit LiPSs shuttling and improve redox kinetics.In this study,we report an ultrathin and laminar SnO_(2)@MXene heterostructure interlayer(SnO_(2)@MX),where SnO_(2) quantum dots(QDs)are uniformly distributed across the MXene layer.The combined structure of SnO_(2) QDs and MXene,along with the creation of numerous active boundary sites with coordination electron environments,plays a critical role in manipulating the catalytic kinetics of sulfur species.The Li–S cell with the SnO_(2)@MX-modified separator not only demonstrates superior electrochemical performance compared to cells with a bare separator but also induces homogeneous Li deposition during cycling.As a result,an areal capacity of 7.6 mAh cm^(-2) under a sulfur loading of 7.5 mg cm^(-2) and a high stability over 500 cycles are achieved.Our work demonstrates a feasible strategy of utilizing a laminar separator interlayer for advanced Li–S batteries awaiting commercialization and may shed light on the understanding of heterostructure catalysis with enhanced reaction kinetics. 展开更多
关键词 Lithium-sulfur battery Heterogeneous catalysis Heterostructure Redox kinetics Lithium dendrites
下载PDF
Case Studies of the Microphysical and Kinematic Structure of Summer Mesoscale Precipitation Clouds over the Eastern Tibetan Plateau
9
作者 Shuo JIA Jiefan YANG Hengchi LEI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第1期97-114,共18页
Three cases of microphysical characteristics and kinematic structures in the negative temperature region of summer mesoscale cloud systems over the eastern Tibetan Plateau(TP)were investigated using X-band dual-polari... Three cases of microphysical characteristics and kinematic structures in the negative temperature region of summer mesoscale cloud systems over the eastern Tibetan Plateau(TP)were investigated using X-band dual-polarization radar.The time-height series of radar physical variables and mesoscale horizontal divergence δderived by quasi-vertical profiles(QVPs)indicated that the dendritic growth layer(DGL,-20°C to-10°C)was ubiquitous,with large-value zones of K_(DP)(specific differential phase),Z_(DR)(differential reflectivity),or both,and corresponded to various dynamic fields(ascent or descent).Ascents in the DGL of cloud systems with vigorous vertical development were coincident with large-value zones of Z_(DR),signifying ice crystals with a large axis ratio,but with no obvious large values of K_(DP),which differs from previous findings.It is speculated that ascent in the DGL promoted ice crystals to undergo further growth before sinking.If there was descent in the DGL,a high echo top corresponded to large values of K_(DP),denoting a large number concentration of ice crystals;but with the echo top descending,small values of K_(DP) formed.This is similar to previous results and reveals that a high echo top is conducive to the generation of ice crystals.When ice particles fall to low levels(-10℃ to 0℃),they grow through riming,aggregation,or deposition,and may not be related to the kinematic structure.It is important to note that this study was only based on a limited number of cases and that further research is therefore needed. 展开更多
关键词 Tibetan Plateau polarimetric variables MICROPHYSICS dendritic growth layer kinematic structure aggregation RIMING
下载PDF
Exercise-induced adaptation of neurons in the vertebrate locomotor system
10
作者 Yue Dai Yi Cheng +2 位作者 Renkai Ge Ke Chen Liming Yang 《Journal of Sport and Health Science》 SCIE CAS CSCD 2024年第2期160-171,共12页
Vertebrate neurons are highly dynamic cells that undergo several alterations in their functioning and physiologies in adaptation to various external stimuli.In particular,how these neurons respond to physical exercise... Vertebrate neurons are highly dynamic cells that undergo several alterations in their functioning and physiologies in adaptation to various external stimuli.In particular,how these neurons respond to physical exercise has long been an area of active research.Studies of the vertebrate locomotor system’s adaptability suggest multiple mechanisms are involved in the regulation of neuronal activity and properties during exercise.In this brief review,we highlight recent results and insights from the field with a focus on the following mechanisms:(a)alterations in neuronal excitability during acute exercise;(b)alterations in neuronal excitability after chronic exercise;(c)exercise-induced changes in neuronal membrane properties via modulation of ion channel activity;(d)exercise-enhanced dendritic plasticity;and(e)exercise-induced alterations in neuronal gene expression and protein synthesis.Our hope is to update the community with a cellular and molecular understanding of the recent mechanisms underlying the adaptability of the vertebrate locomotor system in response to both acute and chronic physical exercise. 展开更多
关键词 Dendritic plasticity EXCITABILITY Exercise Ion channel modulation Neuron adaptation
下载PDF
Carbon-based interface engineering and architecture design for high-performance lithium metal anodes
11
作者 Na Zhu Yuxiang Yang +3 位作者 Yu Li Ying Bai Junfeng Rong Chuan Wu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期207-235,共29页
Metallic lithium(Li)is considered the“Holy Grail”anode material for the nextgeneration of Li batteries with high energy density owing to the extraordinary theoretical specific capacity and the lowest negative electr... Metallic lithium(Li)is considered the“Holy Grail”anode material for the nextgeneration of Li batteries with high energy density owing to the extraordinary theoretical specific capacity and the lowest negative electrochemical potential.However,owing to inhomogeneous Li-ion flux,Li anodes undergo uncontrollable Li deposition,leading to limited power output and practical applications.Carbon materials and their composites with controllable structures and properties have received extensive attention to guide the homogeneous growth of Li to achieve high-performance Li anodes.In this review,the correlation between the behavior of Li anode and the properties of carbon materials is proposed.Subsequently,we review emerging strategies for rationally designing high-performance Li anodes with carbon materials,including interface engineering(stabilizing solid electrolyte interphase layer and other functionalized interfacial layer)and architecture design of host carbon(constructing three-dimension structure,preparing hollow structure,introducing lithiophilic sites,optimizing geometric effects,and compositing with Li).Based on the insights,some prospects on critical challenges and possible future research directions in this field are concluded.It is anticipated that further innovative works on the fundamental chemistry and theoretical research of Li anodes are needed. 展开更多
关键词 carbon materials DENDRITES HOSTS interfacial layers Li metal anodes
下载PDF
Recent progress about transmission electron microscopy characterizations on lithium-ion batteries
12
作者 Yihang Liu Qiuyun Li Ziqiang Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期39-56,I0002,共19页
With the rapid development of portable electronics,new energy vehicles,and smart grids,ion batteries are becoming one of the most widely used energy storage devices,while the safety concern of ion batteries has always... With the rapid development of portable electronics,new energy vehicles,and smart grids,ion batteries are becoming one of the most widely used energy storage devices,while the safety concern of ion batteries has always been an urgent problem to be solved.To develop a safety-guaranteed battery,the characterization of the internal structure is indispensable,where electron microscopy plays a crucial role.Based on this,this paper summarizes the application of transmission electron microscopy(TEM)in battery safety,further concludes and analyzes the aspects of dendrite growth and solid electrolyte interface(SEI)formation that affect the safety of ion batteries,and emphasizes the importance of electron microscopy in battery safety research and the potential of these techniques to promote the future development of this field.These advanced electron microscopy techniques and their prospects are also discussed. 展开更多
关键词 Electron microscopy characterizations Lithium-ion batteries DENDRITES SEI
下载PDF
Stable and reversible zinc metal anode with fluorinated graphite nanosheets surface coating
13
作者 Hong CHANG Zhen-ya LUO +2 位作者 Xue-ru SHI Xin-xin CAO Shu-quan LIANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第10期3358-3371,共14页
A highly stable zinc metal anode modified with a fluorinated graphite nanosheets(FGNSs)coating was designed.The porous structure of the coating layer effectively hinders lateral mass transfer of Zn ions and suppresses... A highly stable zinc metal anode modified with a fluorinated graphite nanosheets(FGNSs)coating was designed.The porous structure of the coating layer effectively hinders lateral mass transfer of Zn ions and suppresses dendrite growth.Moreover,the high electronegativity exhibited by fluorine atoms creates an almost superhydrophobic solid-liquid interface,thereby reducing the interaction between solvent water and the zinc substrate.Consequently,this leads to a significant inhibition of hydrogen evolution corrosion and other side reactions.The modified anode demonstrates exceptional cycling stability,as symmetric cells exhibit sustained cycling for over 1400 h at a current density of 5 mA/cm^(2).Moreover,the full cells with NH_(4)V_(4)O_(10)cathode exhibit an impressive capacity retention rate of 92.2%after undergoing 1000 cycles. 展开更多
关键词 fluorinated graphite hydrophobic coating ANTI-CORROSION dendrite suppression zinc metal anode
下载PDF
Solvation strategies in various electrolytes for advanced zinc metal anode
14
作者 Zhenxu Wang Lichong Bai +2 位作者 Hongguang Fan Yanpeng Wang Wei Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期740-757,共18页
Aqueous zinc-ion batteries(AZIBs),known for their high safety,low cost,and environmental friendliness,have a wide range of potential applications in large-scale energy storage systems.However,the notorious dendrite gr... Aqueous zinc-ion batteries(AZIBs),known for their high safety,low cost,and environmental friendliness,have a wide range of potential applications in large-scale energy storage systems.However,the notorious dendrite growth and severe side reactions on the anode have significantly hindered their further practical development.Recent studies have shown that the solvation chemistry in the electrolyte is not only closely related to the barriers to the commercialization of AZIBs,but have also sparked a number of valuable ideas to address the challenges of AZIBs.Therefore,we systematically summarize and discuss the regulatory mechanisms of solvation chemistry in various types of electrolytes and the influence of the solvation environment on battery performance.The challenges and future directions for solvation strategies based on the electrolyte environment are proposed to improve their performance and expand their application in AZIBs. 展开更多
关键词 Solvation strategy ELECTROLYTE Aqueous zinc-ion batteries Zinc dendrite
下载PDF
Coexisting fast–slow dendritic traveling waves in a 3D-array electric field coupled neuronal network
15
作者 魏熙乐 任泽宇 +2 位作者 卢梅丽 樊亚琴 常思远 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期614-626,共13页
Coexistence of fast and slow traveling waves without synaptic transmission has been found in hhhippocampal tissues,which is closely related to both normal brain activity and abnormal neural activity such as epileptic ... Coexistence of fast and slow traveling waves without synaptic transmission has been found in hhhippocampal tissues,which is closely related to both normal brain activity and abnormal neural activity such as epileptic discharge. However, the propagation mechanism behind this coexistence phenomenon remains unclear. In this paper, a three-dimensional electric field coupled hippocampal neural network is established to investigate generation of coexisting spontaneous fast and slow traveling waves. This model captures two types of dendritic traveling waves propagating in both transverse and longitude directions: the N-methyl-D-aspartate(NMDA)-dependent wave with a speed of about 0.1 m/s and the Ca-dependent wave with a speed of about 0.009 m/s. These traveling waves are synaptic-independent and could be conducted only by the electric fields generated by neighboring neurons, which are basically consistent with the in vitro data measured experiments. It is also found that the slow Ca wave could trigger generation of fast NMDA waves in the propagation path of slow waves whereas fast NMDA waves cannot affect the propagation of slow Ca waves. These results suggest that dendritic Ca waves could acted as the source of the coexistence fast and slow waves. Furthermore, we also confirm the impact of cellular spacing heterogeneity on the onset of coexisting fast and slow waves. The local region with decreasing distances among neighbor neurons is more liable to promote the onset of spontaneous slow waves which, as sources, excite propagation of fast waves. These modeling studies provide possible biophysical mechanisms underlying the neural dynamics of spontaneous traveling waves in brain tissues. 展开更多
关键词 hippocampal network EPILEPTIFORM dendritic oscillation traveling wave electric field coupling
下载PDF
Phase-field lattice-Boltzmann study on fully coupled thermal-solute-convection dendrite growth of Al-Cu alloy
16
作者 Yin-qi Qiu Meng-wu Wu +1 位作者 Xun-peng Qin Shou-mei Xiong 《China Foundry》 SCIE EI CAS CSCD 2024年第2期125-136,共12页
Dendrite growth is a complex liquid-solid phase transition process involving multiple physical factors.A phase-field lattice-Boltzmann method was developed to simulate the two-and three-dimension dendrite growth of Al... Dendrite growth is a complex liquid-solid phase transition process involving multiple physical factors.A phase-field lattice-Boltzmann method was developed to simulate the two-and three-dimension dendrite growth of Al-Cu alloy.The effect of fully coupled thermal-solute-convection interaction on the dendrite growth was investigated by incorporating a parallel-adaptive mesh refinement algorithm into the numerical model.By accurately reproducing the latent heat release,solute diffusion and convective transport behaviors at the liquidsolid interface,the interaction mechanism among thermal-solute-convection transport as well as their coupling effects on the dendrite growth dynamics were discussed.The simulation results show that the release of latent heat slows down the dendrite growth rate,and both natural and forced convection disrupt the symmetrical growth of dendrites.Their combination makes the growth of dendrites more complex,capturing important physical aspects such as recalescence,dendrite tip splitting,dendrite tilting,dendrite remelting,and solute plume in the simulation case.Based on the robustness and powerful ability of the numerical model,the formation mechanisms of these physical aspects were revealed. 展开更多
关键词 simulation phase field dendrite growth thermal-solute-convection interaction
下载PDF
Relationship between Phenotypic Changes of Dendritic Cell Subsets and the Onset of Plateau Phase during Intermittent Interferon Therapy in Patients with CHB
17
作者 YANG Liu WANG Shi Yu +13 位作者 JIANG Ting Ting DENG Wen CHANG Min WU Shu Ling CAO Wei Hua LU Yao SHEN Ge LIU Ru Yu GAO Yuan Jiao XU Meng Jiao HU Lei Ping ZHANG Lu XIE Yao LI Ming Hui 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2024年第3期303-314,共12页
Objective This study aimed to evaluate whether the onset of the plateau phase of slow hepatitis B surface antigen decline in patients with chronic hepatitis B treated with intermittent interferon therapy is related to... Objective This study aimed to evaluate whether the onset of the plateau phase of slow hepatitis B surface antigen decline in patients with chronic hepatitis B treated with intermittent interferon therapy is related to the frequency of dendritic cell subsets and expression of the costimulatory molecules CD40,CD80,CD83,and CD86.Method This was a cross-sectional study in which patients were divided into a natural history group(namely NH group),a long-term oral nucleoside analogs treatment group(namely NA group),and a plateau-arriving group(namely P group).The percentage of plasmacytoid dendritic cell and myeloid dendritic cell subsets in peripheral blood lymphocytes and monocytes and the mean fluorescence intensity of their surface costimulatory molecules were detected using a flow cytometer.Results In total,143 patients were enrolled(NH group,n=49;NA group,n=47;P group,n=47).The results demonstrated that CD141/CD1c double negative myeloid dendritic cell(DNmDC)/lymphocytes and monocytes(%)in P group(0.041[0.024,0.069])was significantly lower than that in NH group(0.270[0.135,0.407])and NA group(0.273[0.150,0.443]),and CD86 mean fluorescence intensity of DNmDCs in P group(1832.0[1484.0,2793.0])was significantly lower than that in NH group(4316.0[2958.0,5169.0])and NA group(3299.0[2534.0,4371.0]),Adjusted P all<0.001.Conclusion Reduced DNmDCs and impaired maturation may be associated with the onset of the plateau phase during intermittent interferon therapy in patients with chronic hepatitis B. 展开更多
关键词 CHB Dendritic Cells Intermittent Interferon Therapy Plateau Phase
下载PDF
The current role of dendritic cells in the progression and treatment of colorectal cancer
18
作者 Yuanci Zhang Songtao Ji +7 位作者 Ge Miao Shuya Du Haojia Wang Xiaohua Yang Ang Li Yuanyuan Lu Xin Wang Xiaodi Zhao 《Cancer Biology & Medicine》 SCIE CAS CSCD 2024年第9期769-783,共15页
Colorectal cancer(CRC)is the third most common cancer and the second leading cause of cancer-related deaths worldwide.Dendritic cells(DCs)constitute a heterogeneous group of antigen-presenting cells that are important... Colorectal cancer(CRC)is the third most common cancer and the second leading cause of cancer-related deaths worldwide.Dendritic cells(DCs)constitute a heterogeneous group of antigen-presenting cells that are important for initiating and regulating both innate and adaptive immune responses.As a crucial component of the immune system,DCs have a pivotal role in the pathogenesis and clinical treatment of CRC.DCs cross-present tumor-related antigens to activate T cells and trigger an antitumor immune response.However,the antitumor immune function of DCs is impaired and immune tolerance is promoted due to the presence of the tumor microenvironment.This review systematically elucidates the specific characteristics and functions of different DC subsets,as well as the role that DCs play in the immune response and tolerance within the CRC microenvironment.Moreover,how DCs contribute to the progression of CRC and potential therapies to enhance antitumor immunity on the basis of existing data are also discussed,which will provide new perspectives and approaches for immunotherapy in patients with CRC. 展开更多
关键词 Colorectal cancer dendritic cells tumor progression treatment strategies
下载PDF
The interaction between KIF21A and KANK1 regulates dendritic morphology and synapse plasticity in neurons
19
作者 Shi-Yan Sun Lingyun Nie +5 位作者 Jing Zhang Xue Fang Hongmei Luo Chuanhai Fu Zhiyi Wei Ai-Hui Tang 《Neural Regeneration Research》 SCIE CAS 2025年第1期209-223,共15页
Morphological alterations in dendritic spines have been linked to changes in functional communication between neurons that affect learning and memory.Kinesin-4 KIF21A helps organize the microtubule-actin network at th... Morphological alterations in dendritic spines have been linked to changes in functional communication between neurons that affect learning and memory.Kinesin-4 KIF21A helps organize the microtubule-actin network at the cell cortex by interacting with KANK1;however,whether KIF21A modulates dendritic structure and function in neurons remains unknown.In this study,we found that KIF21A was distributed in a subset of dendritic spines,and that these KIF21A-positive spines were larger and more structurally plastic than KIF21A-negative spines.Furthermore,the interaction between KIF21A and KANK1 was found to be critical for dendritic spine morphogenesis and synaptic plasticity.Knockdown of either KIF21A or KANK1 inhibited dendritic spine morphogenesis and dendritic branching,and these deficits were fully rescued by coexpressing full-length KIF21A or KANK1,but not by proteins with mutations disrupting direct binding between KIF21A and KANK1 or binding between KANK1 and talin1.Knocking down KIF21A in the hippocampus of rats inhibited the amplitudes of long-term potentiation induced by high-frequency stimulation and negatively impacted the animals’cognitive abilities.Taken together,our findings demonstrate the function of KIF21A in modulating spine morphology and provide insight into its role in synaptic function. 展开更多
关键词 ACTIN CYTOSKELETON dendrite KANK1 KIF21A MICROTUBULE spine morphology SPINE synaptic plasticity talin1
下载PDF
Boosting High-Voltage Practical Lithium Metal Batteries with Tailored Additives
20
作者 Jinhai You Qiong Wang +8 位作者 Runhong Wei Li Deng Yiyang Hu Li Niu Jingkai Wang Xiaomei Zheng Junwei Li Yao Zhou Jun-Tao Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期23-41,共19页
The lithium(Li)metal anode is widely regarded as an ideal anode material for high-energy-density batteries.However,uncontrolled Li dendrite growth often leads to unfavorable interfaces and low Coulombic efficiency(CE)... The lithium(Li)metal anode is widely regarded as an ideal anode material for high-energy-density batteries.However,uncontrolled Li dendrite growth often leads to unfavorable interfaces and low Coulombic efficiency(CE),limiting its broader application.Herein,an ether-based electrolyte(termed FGN-182)is formulated,exhibiting ultra-stable Li metal anodes through the incorporation of LiFSI and LiNO3 as dual salts.The synergistic effect of the dual salts facilitates the formation of a highly robust SEI film with fast Li+transport kinetics.Notably,Li||Cu half cells exhibit an average CE reaching up to 99.56%.In particular,pouch cells equipped with high-loading lithium cobalt oxide(LCO,3 mAh cm^(-2))cathodes,ultrathin Li chips(25μm),and lean electrolytes(5 g Ah-1)demonstrate outstanding cycling performance,retaining 80%capacity after 125 cycles.To address the gas issue in the cathode under high voltage,cathode additives 1,3,6-tricyanohexane is incorporated with FGN-182;the resulting high-voltage LCO||Li(4.4 V)pouch cells can cycle steadily over 93 cycles.This study demonstrates that,even with the use of ether-based electrolytes,it is possible to simultaneously achieve significant improvements in both high Li utilization and electrolyte tolerance to high voltage by exploring appropriate functional additives for both the cathode and anode. 展开更多
关键词 Li metal anode Li dendrites LiNO_(3) 1 3 6-tricyanohexane Pouch cells
下载PDF
上一页 1 2 64 下一页 到第
使用帮助 返回顶部