[ Objective ] The aim was to study the effects of polysaccharides of Dendrobium Huoshanense and Dendrobium moniliforme on oxygen free radicals and lipid peroxidation in vitro. [ Method] The scavenging action on .OH of...[ Objective ] The aim was to study the effects of polysaccharides of Dendrobium Huoshanense and Dendrobium moniliforme on oxygen free radicals and lipid peroxidation in vitro. [ Method] The scavenging action on .OH of polysaccharides, the inhibition action on O2^- of polysaccharides, MDA production of lipid peroxidation were measured by Fenton reaction, self oxidation system of C6H3( OH)3 and TBA method respectively. [ Result] The half scavenging concentration on ·OH of potysaccharides of Dendrobium Huoshanense and Dendrobium moniliforme was 6.79 and 6.75 mg/ml respectively. As to their half inhibition concentration on O2 , the data was 3, 04 and 3.44 mg/ml respectively. Two kinds of Dendrobium polysaccharides bothhad inhibitory actions on lipid peroxidation of liver homogenate induced by auto-oxidation and inducedoxidation, and they could alleviate oxidation damages of mice liver mitochondria induced by Vc-Fe2+ system. [Conclusion] Two kinds of Dendrobium polysacchaddes both had remarkable anti-oxidation activity in vitro.展开更多
A new bibenzyl derivative, 3,4-dihydroxy-4,5-dimethoxy bibenzyl, was isolated from a orchid Dendrobium moniliforme. The structure elucidation and 1H,13C NMR assignments were achieved by spectroscopic method.
A new bibenzyl glycoside has been isolated from the stems of Dendrobium moniliforme (L.) Sw. (Orchidaceae). Its structure has been identified on the basis of spectroscopic and chemical methods.
[ Objective] The study aimed to investigate the effects of silicon on physiology and biochemistry of Dendrobium moniliforme plantlets under low tempera- ture stress. [ Method ] By using Dendrobium monilforme as the ex...[ Objective] The study aimed to investigate the effects of silicon on physiology and biochemistry of Dendrobium moniliforme plantlets under low tempera- ture stress. [ Method ] By using Dendrobium monilforme as the experimental material, different concentrations of Na2SiO3 (0, O. 2, 0.4, 0.6, 0.8, 1.0, 5.0 and 10.0 mmol/L) was added to the basic medium[ 1/2MS + 6-BA (0.1mg/L) + NAA ( 1 mg/L) + agar (7.2 g/L) + sucrose (30 g/L) ] for tissue culture; af- ter hardening and transplanting, Dendrobium moniliforme plantlets were treated under low temperature stress at 4 ~C for 0, 24 and 48 h, in order to investigate the physiological response of Dendrobium ranniliforme leaves to different concentrations of Na2SiO3. [ Result] Under low temperature stress at 4℃, Dendrob/um mon//i- fortns leaves have certain osmotic regulation ability, and the three osmotic regulation substances show different variation trends at different stages. Appropriate con- centration of NshSiO3 can increase the contents of free proline, soluble sugar and soluble protein to varying degrees, reduce MDA content and further improve the cold resistance of Dendrobium moniliforme plantlets. The order of the effects of Na2SiO~ on various physiological indicators is : free proline 〉 MDA 〉 soluble sugar (or soluble protein). According to the correlation analysis among various physiological indicators, free proline, soluble sugar, soluble protein and MDA contents can all be used as reference indicators to identify the cold resistance of Dendrobium moniliforme. [ Conclusion] The addition of Na2SiO3 (0.4 retool/L) can moder- ately decrease the thermal energy for normal growth of Dendrobium moniliforme, which is conducive to reducing the cost of cultivation. Key words Na2SiO3 ;Dendrobium monlifforme;Low temperature stress;Physiological and biochemical characteristics展开更多
文摘[ Objective ] The aim was to study the effects of polysaccharides of Dendrobium Huoshanense and Dendrobium moniliforme on oxygen free radicals and lipid peroxidation in vitro. [ Method] The scavenging action on .OH of polysaccharides, the inhibition action on O2^- of polysaccharides, MDA production of lipid peroxidation were measured by Fenton reaction, self oxidation system of C6H3( OH)3 and TBA method respectively. [ Result] The half scavenging concentration on ·OH of potysaccharides of Dendrobium Huoshanense and Dendrobium moniliforme was 6.79 and 6.75 mg/ml respectively. As to their half inhibition concentration on O2 , the data was 3, 04 and 3.44 mg/ml respectively. Two kinds of Dendrobium polysaccharides bothhad inhibitory actions on lipid peroxidation of liver homogenate induced by auto-oxidation and inducedoxidation, and they could alleviate oxidation damages of mice liver mitochondria induced by Vc-Fe2+ system. [Conclusion] Two kinds of Dendrobium polysacchaddes both had remarkable anti-oxidation activity in vitro.
文摘A new bibenzyl derivative, 3,4-dihydroxy-4,5-dimethoxy bibenzyl, was isolated from a orchid Dendrobium moniliforme. The structure elucidation and 1H,13C NMR assignments were achieved by spectroscopic method.
文摘A new bibenzyl glycoside has been isolated from the stems of Dendrobium moniliforme (L.) Sw. (Orchidaceae). Its structure has been identified on the basis of spectroscopic and chemical methods.
基金Supported by College-level Fund of Sichuan Agricultural University(64070113)
文摘[ Objective] The study aimed to investigate the effects of silicon on physiology and biochemistry of Dendrobium moniliforme plantlets under low tempera- ture stress. [ Method ] By using Dendrobium monilforme as the experimental material, different concentrations of Na2SiO3 (0, O. 2, 0.4, 0.6, 0.8, 1.0, 5.0 and 10.0 mmol/L) was added to the basic medium[ 1/2MS + 6-BA (0.1mg/L) + NAA ( 1 mg/L) + agar (7.2 g/L) + sucrose (30 g/L) ] for tissue culture; af- ter hardening and transplanting, Dendrobium moniliforme plantlets were treated under low temperature stress at 4 ~C for 0, 24 and 48 h, in order to investigate the physiological response of Dendrobium ranniliforme leaves to different concentrations of Na2SiO3. [ Result] Under low temperature stress at 4℃, Dendrob/um mon//i- fortns leaves have certain osmotic regulation ability, and the three osmotic regulation substances show different variation trends at different stages. Appropriate con- centration of NshSiO3 can increase the contents of free proline, soluble sugar and soluble protein to varying degrees, reduce MDA content and further improve the cold resistance of Dendrobium moniliforme plantlets. The order of the effects of Na2SiO~ on various physiological indicators is : free proline 〉 MDA 〉 soluble sugar (or soluble protein). According to the correlation analysis among various physiological indicators, free proline, soluble sugar, soluble protein and MDA contents can all be used as reference indicators to identify the cold resistance of Dendrobium moniliforme. [ Conclusion] The addition of Na2SiO3 (0.4 retool/L) can moder- ately decrease the thermal energy for normal growth of Dendrobium moniliforme, which is conducive to reducing the cost of cultivation. Key words Na2SiO3 ;Dendrobium monlifforme;Low temperature stress;Physiological and biochemical characteristics