期刊文献+
共找到9,442篇文章
< 1 2 250 >
每页显示 20 50 100
Automatic modulation recognition of radio fuzes using a DR2D-based adaptive denoising method and textural feature extraction 被引量:1
1
作者 Yangtian Liu Xiaopeng Yan +2 位作者 Qiang Liu Tai An Jian Dai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期328-338,共11页
The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-n... The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-noise ratio(SNR)of such environments is usually low,which makes it difficult to implement accurate recognition of radio fuzes.To solve the above problem,a radio fuze automatic modulation recognition(AMR)method for low-SNR environments is proposed.First,an adaptive denoising algorithm based on data rearrangement and the two-dimensional(2D)fast Fourier transform(FFT)(DR2D)is used to reduce the noise of the intercepted radio fuze intermediate frequency(IF)signal.Then,the textural features of the denoised IF signal rearranged data matrix are extracted from the statistical indicator vectors of gray-level cooccurrence matrices(GLCMs),and support vector machines(SVMs)are used for classification.The DR2D-based adaptive denoising algorithm achieves an average correlation coefficient of more than 0.76 for ten fuze types under SNRs of-10 d B and above,which is higher than that of other typical algorithms.The trained SVM classification model achieves an average recognition accuracy of more than 96%on seven modulation types and recognition accuracies of more than 94%on each modulation type under SNRs of-12 d B and above,which represents a good AMR performance of radio fuzes under low SNRs. 展开更多
关键词 Automatic modulation recognition Adaptive denoising Data rearrangement and the 2D FFT(DR2D) Radio fuze
下载PDF
AMicroseismic Signal Denoising Algorithm Combining VMD and Wavelet Threshold Denoising Optimized by BWOA
2
作者 Dijun Rao Min Huang +2 位作者 Xiuzhi Shi Zhi Yu Zhengxiang He 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期187-217,共31页
The denoising of microseismic signals is a prerequisite for subsequent analysis and research.In this research,a new microseismic signal denoising algorithm called the Black Widow Optimization Algorithm(BWOA)optimized ... The denoising of microseismic signals is a prerequisite for subsequent analysis and research.In this research,a new microseismic signal denoising algorithm called the Black Widow Optimization Algorithm(BWOA)optimized VariationalMode Decomposition(VMD)jointWavelet Threshold Denoising(WTD)algorithm(BVW)is proposed.The BVW algorithm integrates VMD and WTD,both of which are optimized by BWOA.Specifically,this algorithm utilizes VMD to decompose the microseismic signal to be denoised into several Band-Limited IntrinsicMode Functions(BLIMFs).Subsequently,these BLIMFs whose correlation coefficients with the microseismic signal to be denoised are higher than a threshold are selected as the effective mode functions,and the effective mode functions are denoised using WTD to filter out the residual low-and intermediate-frequency noise.Finally,the denoised microseismic signal is obtained through reconstruction.The ideal values of VMD parameters and WTD parameters are acquired by searching with BWOA to achieve the best VMD decomposition performance and solve the problem of relying on experience and requiring a large workload in the application of the WTD algorithm.The outcomes of simulated experiments indicate that this algorithm is capable of achieving good denoising performance under noise of different intensities,and the denoising performance is significantly better than the commonly used VMD and Empirical Mode Decomposition(EMD)algorithms.The BVW algorithm is more efficient in filtering noise,the waveform after denoising is smoother,the amplitude of the waveform is the closest to the original signal,and the signal-to-noise ratio(SNR)and the root mean square error after denoising are more satisfying.The case based on Fankou Lead-Zinc Mine shows that for microseismic signals with different intensities of noise monitored on-site,compared with VMD and EMD,the BVW algorithm ismore efficient in filtering noise,and the SNR after denoising is higher. 展开更多
关键词 Variational mode decomposition microseismic signal denoising wavelet threshold denoising black widow optimization algorithm
下载PDF
Vein visualization enhancement by dual-wavelength phase-locked denoising technology
3
作者 Lihua Ruan Zhiqin Yin +4 位作者 Shibing Zhou Weibo Zheng Wei Lu Tao Zhang Shaowei Wang 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第3期73-83,共11页
Visual near-infrared imaging equipment has broad applications in various fields such as venipuncture,facial injections,and safety verification due to its noncontact,compact,and portable design.Currently,most studies u... Visual near-infrared imaging equipment has broad applications in various fields such as venipuncture,facial injections,and safety verification due to its noncontact,compact,and portable design.Currently,most studies utilize near-infrared single-wavelength for image acquisition of veins.However,many substances in the skin,including water,protein,and melanin can create significant background noise,which hinders accurate detection.In this paper,we developed a dual-wavelength imaging system with phase-locked denoising technology to acquire vein image.The signals in the effective region are compared by using the absorption valley and peak of hemoglobin at 700nm and 940nm,respectively.The phase-locked denoising algorithm is applied to decrease the noise and interference of complex surroundings from the images.The imaging results of the vein are successfully extracted in complex noise environment.It is demonstrated that the denoising effect on hand veins imaging can be improved with 57.3%by using our dual-wavelength phase-locked denoising technology.Consequently,this work proposes a novel approach for venous imaging with dual-wavelengths and phase-locked denoising algorithm to extract venous imaging results in complex noisy environment better. 展开更多
关键词 DUAL-WAVELENGTH phase-locked denoising vein visualization enhancement.
下载PDF
EDU-GAN:Edge Enhancement Generative Adversarial Networks with Dual-Domain Discriminators for Inscription Images Denoising
4
作者 Yunjing Liu Erhu Zhang +2 位作者 Jingjing Wang Guangfeng Lin Jinghong Duan 《Computers, Materials & Continua》 SCIE EI 2024年第7期1633-1653,共21页
Recovering high-quality inscription images from unknown and complex inscription noisy images is a challenging research issue.Different fromnatural images,character images pay more attention to stroke information.Howev... Recovering high-quality inscription images from unknown and complex inscription noisy images is a challenging research issue.Different fromnatural images,character images pay more attention to stroke information.However,existingmodelsmainly consider pixel-level informationwhile ignoring structural information of the character,such as its edge and glyph,resulting in reconstructed images with mottled local structure and character damage.To solve these problems,we propose a novel generative adversarial network(GAN)framework based on an edge-guided generator and a discriminator constructed by a dual-domain U-Net framework,i.e.,EDU-GAN.Unlike existing frameworks,the generator introduces the edge extractionmodule,guiding it into the denoising process through the attention mechanism,which maintains the edge detail of the restored inscription image.Moreover,a dual-domain U-Net-based discriminator is proposed to learn the global and local discrepancy between the denoised and the label images in both image and morphological domains,which is helpful to blind denoising tasks.The proposed dual-domain discriminator and generator for adversarial training can reduce local artifacts and keep the denoised character structure intact.Due to the lack of a real-inscription image,we built the real-inscription dataset to provide an effective benchmark for studying inscription image denoising.The experimental results show the superiority of our method both in the synthetic and real-inscription datasets. 展开更多
关键词 Dual-domain discriminators inscription images denoising edge-guided generator
下载PDF
Attention-Based Residual Dense Shrinkage Network for ECG Denoising
5
作者 Dengyong Zhang Minzhi Yuan +3 位作者 Feng Li Lebing Zhang Yanqiang Sun Yiming Ling 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2809-2824,共16页
Electrocardiogram(ECG)signal is one of the noninvasive physiological measurement techniques commonly usedin cardiac diagnosis.However,in real scenarios,the ECGsignal is susceptible to various noise erosion,which affec... Electrocardiogram(ECG)signal is one of the noninvasive physiological measurement techniques commonly usedin cardiac diagnosis.However,in real scenarios,the ECGsignal is susceptible to various noise erosion,which affectsthe subsequent pathological analysis.Therefore,the effective removal of the noise from ECG signals has becomea top priority in cardiac diagnostic research.Aiming at the problem of incomplete signal shape retention andlow signal-to-noise ratio(SNR)after denoising,a novel ECG denoising network,named attention-based residualdense shrinkage network(ARDSN),is proposed in this paper.Firstly,the shallow ECG characteristics are extractedby a shallow feature extraction network(SFEN).Then,the residual dense shrinkage attention block(RDSAB)isused for adaptive noise suppression.Finally,feature fusion representation(FFR)is performed on the hierarchicalfeatures extracted by a series of RDSABs to reconstruct the de-noised ECG signal.Experiments on the MIT-BIHarrhythmia database and MIT-BIH noise stress test database indicate that the proposed scheme can effectively resistthe interference of different sources of noise on the ECG signal. 展开更多
关键词 Electrocardiogram signal denoising signal-to-noise ratio attention-based residual dense shrinkage network MIT-BIH
下载PDF
An alternative 2D ICEEMDAN-based denoising method and its application in processing magnetic anomaly data
6
作者 Jun Xu Jinsong Du Changqing Yuan 《Geodesy and Geodynamics》 EI CSCD 2024年第5期465-476,共12页
Due to environmental noise and human factors,magnetic data collected in the field often contain various noises and interferences that significantly affect the subsequent data processing and interpretation.Empirical Mo... Due to environmental noise and human factors,magnetic data collected in the field often contain various noises and interferences that significantly affect the subsequent data processing and interpretation.Empirical Mode Decomposition(EMD),an adaptive multiscale analysis method for nonlinear and non-stationary signals,is widely used in geophysical and geodetic data processing.Compared with traditional EMD,Improved Complete Ensemble EMD with Adaptive Noise(ICEEMDAN)is more effective in addressing the problem of mode mixing.Based on the principles of 1D ICEEMDAN,this paper presents an alternative algorithm for 2D ICEEMDAN,extending its application to two-dimensional scenarios.The effectiveness of the proposed approach is demonstrated through synthetic signal experiments,which show that the 2D ICEEMDAN exhibits a weaker mode mixing effect compared to the traditional bidimensional EMD(BEMD)method.Furthermore,to improve the performance of the denoising method based on 2D ICEEMDAN and preserve useful signals in high-frequency components,an improved soft thresholding technique is introduced.Synthetic magnetic anomaly data testing indicates that our denoising method effectively preserves signal continuity and outperforms traditional soft thresholding methods.To validate the practical application of this improved threshold denoising method based on 2D ICEEMDAN,it is applied to ground magnetic survey data in the Yandun area of Xinjiang.The results demonstrate the effectiveness of the method in removing noise while retaining essential information from practical magnetic anomaly data.In particular,practical applications suggest that 2D ICEEMDAN can extract trend signals more accurately than the BEMD.In conclusion,as a potential tool for multi-scale decomposition,the 2D ICEEMDAN is versatile in processing and analyzing 2D geophysical and geodetic data. 展开更多
关键词 2D ICEEMDAN Mode mixing effect Magnetic anomaly denoising Improved soft thresholding
下载PDF
A Second-Order Image Denoising Model for Contrast Preservation
7
作者 Wei Zhu 《Communications on Applied Mathematics and Computation》 EI 2024年第2期1406-1427,共22页
In this work,we propose a second-order model for image denoising by employing a novel potential function recently developed in Zhu(J Sci Comput 88:46,2021)for the design of a regularization term.Due to this new second... In this work,we propose a second-order model for image denoising by employing a novel potential function recently developed in Zhu(J Sci Comput 88:46,2021)for the design of a regularization term.Due to this new second-order derivative based regularizer,the model is able to alleviate the staircase effect and preserve image contrast.The augmented Lagrangian method(ALM)is utilized to minimize the associated functional and convergence analysis is established for the proposed algorithm.Numerical experiments are presented to demonstrate the features of the proposed model. 展开更多
关键词 Image denoising Variational model Image contrast Augmented Lagrangian method(ALM)
下载PDF
Prediction of high-embankment settlement combining joint denoising technique and enhanced GWO-v-SVR method
8
作者 Qi Zhang Qian Su +2 位作者 Zongyu Zhang Zhixing Deng De Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期317-332,共16页
Reliable long-term settlement prediction of a high embankment relates to mountain infrastructure safety.This study developed a novel hybrid model(NHM)that combines a joint denoising technique with an enhanced gray wol... Reliable long-term settlement prediction of a high embankment relates to mountain infrastructure safety.This study developed a novel hybrid model(NHM)that combines a joint denoising technique with an enhanced gray wolf optimizer(EGWO)-n-support vector regression(n-SVR)method.High-embankment field measurements were preprocessed using the joint denoising technique,which in-cludes complete ensemble empirical mode decomposition,singular value decomposition,and wavelet packet transform.Furthermore,high-embankment settlements were predicted using the EGWO-n-SVR method.In this method,the standard gray wolf optimizer(GWO)was improved to obtain the EGWO to better tune the n-SVR model hyperparameters.The proposed NHM was then tested in two case studies.Finally,the influences of the data division ratio and kernel function on the EGWO-n-SVR forecasting performance and prediction efficiency were investigated.The results indicate that the NHM suppresses noise and restores details in high-embankment field measurements.Simultaneously,the NHM out-performs other alternative prediction methods in prediction accuracy and robustness.This demonstrates that the proposed NHM is effective in predicting high-embankment settlements with noisy field mea-surements.Moreover,the appropriate data division ratio and kernel function for EGWO-n-SVR are 7:3 and radial basis function,respectively. 展开更多
关键词 High embankment Settlement prediction Joint denoising technique Enhanced gray wolf optimizer Support vector regression
下载PDF
Image Processing for Denoising Using Composite Adaptive Filtering Methods Based on RMSE
9
作者 Yanlu Chen Ruijie Wang +1 位作者 Puming Zong Da Chen 《Open Journal of Applied Sciences》 2024年第3期660-675,共16页
As one of the carriers for human communication and interaction, images are prone to contamination by noise during transmission and reception, which is often uncontrollable and unknown. Therefore, how to denoise images... As one of the carriers for human communication and interaction, images are prone to contamination by noise during transmission and reception, which is often uncontrollable and unknown. Therefore, how to denoise images contaminated by unknown noise has gradually become one of the research focuses. In order to achieve blind denoising and separation to restore images, this paper proposes a method for image processing based on Root Mean Square Error (RMSE) by integrating multiple filtering methods for denoising. This method includes Wavelet Filtering, Gaussian Filtering, Median Filtering, Mean Filtering, Bilateral Filtering, Adaptive Bandpass Filtering, Non-local Means Filtering and Regularization Denoising suitable for different types of noise. We can apply this method to denoise images contaminated by blind noise sources and evaluate the denoising effects using RMSE. The smaller the RMSE, the better the denoising effect. The optimal denoising result is selected through comprehensively comparing the RMSE values of all methods. Experimental results demonstrate that the proposed method effectively denoises and restores images contaminated by blind noise sources. 展开更多
关键词 Blind denoising Adaptive RMSE Image Restoratio
下载PDF
BeFOI: A Novel Method Based on Conditional Diffusion Model for Medical Image Denoising
10
作者 Huijie Hu Zhen Huang 《Journal of Electronic Research and Application》 2024年第2期158-165,共8页
The progress in medical imaging technology highlights the importance of image quality for effective diagnosis and treatment.Yet,noise during capture and transmission can compromise image accuracy and reliability,compl... The progress in medical imaging technology highlights the importance of image quality for effective diagnosis and treatment.Yet,noise during capture and transmission can compromise image accuracy and reliability,complicating clinical decisions.The rising interest in diffusion models has led to their exploration of denoising images.We present Be-FOI(Better Fluoro Images),a weakly supervised model that uses cine images to denoise fluoroscopic images,both DR types.Trained through precise noise estimation and simulation,BeFOI employs Markov chains to denoise using only the fluoroscopic image as guidance.Our tests show that BeFOI outperforms other methods,reducing noise and enhancing clar-ity and diagnostic utility,making it an effective post-processing tool for medical images. 展开更多
关键词 Diffusion model denoising Medical images
下载PDF
A robust deformed convolutional neural network(CNN)for image denoising 被引量:11
11
作者 Qi Zhang Jingyu Xiao +2 位作者 Chunwei Tian Jerry Chun‐Wei Lin Shichao Zhang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第2期331-342,共12页
Due to strong learning ability,convolutional neural networks(CNNs)have been developed in image denoising.However,convolutional operations may change original distributions of noise in corrupted images,which may increa... Due to strong learning ability,convolutional neural networks(CNNs)have been developed in image denoising.However,convolutional operations may change original distributions of noise in corrupted images,which may increase training difficulty in image denoising.Using relations of surrounding pixels can effectively resolve this problem.Inspired by that,we propose a robust deformed denoising CNN(RDDCNN)in this paper.The proposed RDDCNN contains three blocks:a deformable block(DB),an enhanced block(EB)and a residual block(RB).The DB can extract more representative noise features via a deformable learnable kernel and stacked convolutional architecture,according to relations of surrounding pixels.The EB can facilitate contextual interaction through a dilated convolution and a novel combination of convolutional layers,batch normalisation(BN)and ReLU,which can enhance the learning ability of the proposed RDDCNN.To address long-term dependency problem,the RB is used to enhance the memory ability of shallow layer on deep layers and construct a clean image.Besides,we implement a blind denoising model.Experimental results demonstrate that our denoising model outperforms popular denoising methods in terms of qualitative and quantitative analysis.Codes can be obtained at https://github.com/hellloxiaotian/RDDCNN. 展开更多
关键词 blind denoising CNN deformed block enhanced block
下载PDF
Denoising Fault-Aware Wavelet Network:A Signal Processing Informed Neural Network for Fault Diagnosis 被引量:7
12
作者 Zuogang Shang Zhibin Zhao Ruqiang Yan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第1期1-18,共18页
Deep learning(DL) is progressively popular as a viable alternative to traditional signal processing(SP) based methods for fault diagnosis. However, the lack of explainability makes DL-based fault diagnosis methods dif... Deep learning(DL) is progressively popular as a viable alternative to traditional signal processing(SP) based methods for fault diagnosis. However, the lack of explainability makes DL-based fault diagnosis methods difficult to be trusted and understood by industrial users. In addition, the extraction of weak fault features from signals with heavy noise is imperative in industrial applications. To address these limitations, inspired by the Filterbank-Feature-Decision methodology, we propose a new Signal Processing Informed Neural Network(SPINN) framework by embedding SP knowledge into the DL model. As one of the practical implementations for SPINN, a denoising fault-aware wavelet network(DFAWNet) is developed, which consists of fused wavelet convolution(FWConv), dynamic hard thresholding(DHT),index-based soft filtering(ISF), and a classifier. Taking advantage of wavelet transform, FWConv extracts multiscale features while learning wavelet scales and selecting important wavelet bases automatically;DHT dynamically eliminates noise-related components via point-wise hard thresholding;inspired by index-based filtering, ISF optimizes and selects optimal filters for diagnostic feature extraction. It’s worth noting that SPINN may be readily applied to different deep learning networks by simply adding filterbank and feature modules in front. Experiments results demonstrate a significant diagnostic performance improvement over other explainable or denoising deep learning networks. The corresponding code is available at https://github. com/alber tszg/DFAWn et. 展开更多
关键词 Signal processing Deep learning Explainable denoising Fault diagnosis
下载PDF
Hformer:highly efficient vision transformer for low-dose CT denoising 被引量:1
13
作者 Shi-Yu Zhang Zhao-Xuan Wang +5 位作者 Hai-Bo Yang Yi-Lun Chen Yang Li Quan Pan Hong-Kai Wang Cheng-Xin Zhao 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第4期161-174,共14页
In this paper,we propose Hformer,a novel supervised learning model for low-dose computer tomography(LDCT)denoising.Hformer combines the strengths of convolutional neural networks for local feature extraction and trans... In this paper,we propose Hformer,a novel supervised learning model for low-dose computer tomography(LDCT)denoising.Hformer combines the strengths of convolutional neural networks for local feature extraction and transformer models for global feature capture.The performance of Hformer was verified and evaluated based on the AAPM-Mayo Clinic LDCT Grand Challenge Dataset.Compared with the former representative state-of-the-art(SOTA)model designs under different architectures,Hformer achieved optimal metrics without requiring a large number of learning parameters,with metrics of33.4405 PSNR,8.6956 RMSE,and 0.9163 SSIM.The experiments demonstrated designed Hformer is a SOTA model for noise suppression,structure preservation,and lesion detection. 展开更多
关键词 Low-dose CT Deep learning Medical image Image denoising Convolutional neural networks Selfattention Residual network auto-encoder
下载PDF
Simultaneous denoising and resolution enhancement of seismic data based on elastic convolution dictionary learning 被引量:1
14
作者 Nan-Ying Lan Fan-Chang Zhang +1 位作者 Kai-Heng Sang Xing-Yao Yin 《Petroleum Science》 SCIE EI CAS CSCD 2023年第4期2127-2140,共14页
Enhancing seismic resolution is a key component in seismic data processing, which plays a valuable role in raising the prospecting accuracy of oil reservoirs. However, in noisy situations, existing resolution enhancem... Enhancing seismic resolution is a key component in seismic data processing, which plays a valuable role in raising the prospecting accuracy of oil reservoirs. However, in noisy situations, existing resolution enhancement methods are difficult to yield satisfactory processing outcomes for reservoir characterization. To solve this problem, we develop a new approach for simultaneous denoising and resolution enhancement of seismic data based on convolution dictionary learning. First, an elastic convolution dictionary learning algorithm is presented to efficiently learn a convolution dictionary with stronger representation capability from the noisy data to be processed. Specifically, the algorithm introduces the elastic L1/2 norm as a sparsity constraint and employs a steepest gradient descent strategy to efficiently solve the frequency-domain linear system with substantial computational cost in a half-quadratic splitting framework. Then, based on the learned convolution dictionary, a weighted convolutional sparse representation paradigm is designed to encode the noisy data to acquire an optimal sparse approximation of the effective signal. Subsequently, a high-resolution dictionary with a broadband spectrum is constructed by the proposed parameter scaling strategy and matched filtering technique on the basis of atomic spectrum modeling. Finally, the optimal sparse approximation of the effective signal and the constructed high-resolution dictionary are used for data reconstruction to obtain the seismic signal with high resolution and high signal-to-noise ratio. Synthetic and field dataset examples are executed to check the effectiveness and reliability of the developed method. The results indicate that this method has a more competitive performance in seismic applications compared with the conventional deconvolution and spectral whitening methods. 展开更多
关键词 Simultaneous denoising and resolution enhancement Elastic convolution dictionary learning Weighted convolutional sparse representation Matched filtering
下载PDF
Wavelet Denoising Applied to Hardware Redundant Systems for Rolling Element Bearing Fault Detection 被引量:1
15
作者 Dustin Helm Markus Timusk 《Journal of Dynamics, Monitoring and Diagnostics》 2023年第2期133-143,共11页
This work presents a novel wavelet-based denoising technique for improving the signal-to-noise ratio(SNR)of nonsteady vibration signals in hardware redundant systems.The proposed method utilizes the relationship betwe... This work presents a novel wavelet-based denoising technique for improving the signal-to-noise ratio(SNR)of nonsteady vibration signals in hardware redundant systems.The proposed method utilizes the relationship between redundant hardware components to effectively separate fault-related components from the vibration signature,thus enhancing fault detection accuracy.The study evaluates the proposed technique on two mechanically identical subsystems that are simultaneously controlled under the same speed and load inputs,with and without the proposed denoising step.The results demonstrate an increase in detection accuracy when incorporating the proposed denoising method into a fault detection system designed for hardware redundant machinery.This work is original in its application of a new method for improving performance when using residual analysis for fault detection in hardware redundant machinery configurations.Moreover,the proposed methodology is applicable to nonstationary equipment that experiences changes in both speed and load. 展开更多
关键词 fault detection hardware redundancy VIBRATION wavelet denoising
下载PDF
Variant Wasserstein Generative Adversarial Network Applied on Low Dose CT Image Denoising
16
作者 Anoud A.Mahmoud Hanaa A.Sayed Sara S.Mohamed 《Computers, Materials & Continua》 SCIE EI 2023年第5期4535-4552,共18页
Computed Tomography(CT)images have been extensively employed in disease diagnosis and treatment,causing a huge concern over the dose of radiation to which patients are exposed.Increasing the radiation dose to get a be... Computed Tomography(CT)images have been extensively employed in disease diagnosis and treatment,causing a huge concern over the dose of radiation to which patients are exposed.Increasing the radiation dose to get a better image may lead to the development of genetic disorders and cancer in the patients;on the other hand,decreasing it by using a Low-Dose CT(LDCT)image may cause more noise and increased artifacts,which can compromise the diagnosis.So,image reconstruction from LDCT image data is necessary to improve radiologists’judgment and confidence.This study proposed three novel models for denoising LDCT images based on Wasserstein Generative Adversarial Network(WGAN).They were incorporated with different loss functions,including Visual Geometry Group(VGG),Structural Similarity Loss(SSIM),and Structurally Sensitive Loss(SSL),to reduce noise and preserve important information on LDCT images and investigate the effect of different types of loss functions.Furthermore,experiments have been conducted on the Graphical Processing Unit(GPU)and Central Processing Unit(CPU)to compare the performance of the proposed models.The results demonstrated that images from the proposed WGAN-SSIM,WGAN-VGG-SSIM,and WGAN-VGG-SSL were denoised better than those from state-of-the-art models(WGAN,WGAN-VGG,and SMGAN)and converged to a stable equilibrium compared with WGAN and WGAN-VGG.The proposed models are effective in reducing noise,suppressing artifacts,and maintaining informative structure and texture details,especially WGAN-VGG-SSL which achieved a high peak-signalto-noise ratio(PNSR)on both GPU(26.1336)and CPU(25.8270).The average accuracy of WGAN-VGG-SSL outperformed that of the state-ofthe-art methods by 1 percent.Experiments prove that theWGAN-VGG-SSL is more stable than the other models on both GPU and CPU. 展开更多
关键词 Machine learning deep learning image denoising low dose CT loss function
下载PDF
Effective Denoising Architecture for Handling Multiple Noises
17
作者 Na Hyoun Kim Namgyu Kim 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期2667-2682,共16页
Object detection,one of the core research topics in computer vision,is extensively used in various industrial activities.Although there have been many studies of daytime images where objects can be easily detected,the... Object detection,one of the core research topics in computer vision,is extensively used in various industrial activities.Although there have been many studies of daytime images where objects can be easily detected,there is relatively little research on nighttime images.In the case of nighttime,various types of noises,such as darkness,haze,and light blur,deteriorate image quality.Thus,an appropriate process for removing noise must precede to improve object detection performance.Although there are many studies on removing individual noise,only a few studies handle multiple noises simultaneously.In this paper,we pro-pose a convolutional denoising autoencoder(CDAE)-based architecture trained on various types of noises.We also present various composing modules for each noise to improve object detection performance for night images.Using the exclusively dark(ExDark)Image dataset,experimental results show that the Sequentialfiltering architecture showed superior mean average precision(mAP)compared to other architectures. 展开更多
关键词 Object detection computer vision NIGHTTIME multiple noises convolutional denoising autoencoder
下载PDF
Underwater acoustic signal denoising model based on secondary variational mode decomposition
18
作者 Hong Yang Wen-shuai Shi Guo-hui Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第10期87-110,共24页
Due to the complexity of marine environment,underwater acoustic signal will be affected by complex background noise during transmission.Underwater acoustic signal denoising is always a difficult problem in underwater ... Due to the complexity of marine environment,underwater acoustic signal will be affected by complex background noise during transmission.Underwater acoustic signal denoising is always a difficult problem in underwater acoustic signal processing.To obtain a better denoising effect,a new denoising method of underwater acoustic signal based on optimized variational mode decomposition by black widow optimization algorithm(BVMD),fluctuation-based dispersion entropy threshold improved by Otsu method(OFDE),cosine similarity stationary threshold(CSST),BVMD,fluctuation-based dispersion entropy(FDE),named BVMD-OFDE-CSST-BVMD-FDE,is proposed.In the first place,decompose the original signal into a series of intrinsic mode functions(IMFs)by BVMD.Afterwards,distinguish pure IMFs,mixed IMFs and noise IMFs by OFDE and CSST,and reconstruct pure IMFs and mixed IMFs to obtain primary denoised signal.In the end,decompose primary denoising signal into IMFs by BVMD again,use the FDE value to distinguish noise IMFs and pure IMFs,and reconstruct pure IMFs to obtain the final denoised signal.The proposed mothod has three advantages:(i)BVMD can adaptively select the decomposition layer and penalty factor of VMD.(ii)FDE and CS are used as double criteria to distinguish noise IMFs from useful IMFs,and Otsu algorithm and CSST algorithm can effectively avoid the error caused by manually selecting thresholds.(iii)Secondary decomposition can make up for the deficiency of primary decomposition and further remove a small amount of noise.The chaotic signal and real ship signal are denoised.The experiment result shows that the proposed method can effectively denoise.It improves the denoising effect after primary decomposition,and has good practical value. 展开更多
关键词 Underwater acoustic signal denoising Variational mode decomposition Secondary decomposition Fluctuation-based dispersion entropy Cosine similarity
下载PDF
Novel Double Modular Redundancy Based Fault-Tolerant FIR Filter for Image Denoising
19
作者 V.S.Vaisakhi D.Surendran 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期181-193,共13页
In signal processing and communication systems,digital filters are widely employed.In some circumstances,the reliability of those systems is crucial,necessitating the use of fault tolerant filter implementations.Many ... In signal processing and communication systems,digital filters are widely employed.In some circumstances,the reliability of those systems is crucial,necessitating the use of fault tolerant filter implementations.Many strategies have been presented throughout the years to achieve fault tolerance by utilising the structure and properties of the filters.As technology advances,more complicated systems with several filters become possible.Some of the filters in those complicated systems frequently function in parallel,for example,by applying the same filter to various input signals.Recently,a simple strategy for achieving fault tolerance that takes advantage of the availability of parallel filters was given.Many fault-tolerant ways that take advantage of the filter’s structure and properties have been proposed throughout the years.The primary idea is to use structured authentication scan chains to study the internal states of finite impulse response(FIR)components in order to detect and recover the exact state of faulty modules through the state of non-faulty modules.Finally,a simple solution of Double modular redundancy(DMR)based fault tolerance was developed that takes advantage of the availability of parallel filters for image denoising.This approach is expanded in this short to display how parallel filters can be protected using error correction codes(ECCs)in which each filter is comparable to a bit in a standard ECC.“Advanced error recovery for parallel systems,”the suggested technique,can find and eliminate hidden defects in FIR modules,and also restore the system from multiple failures impacting two FIR modules.From the implementation,Xilinx ISE 14.7 was found to have given significant error reduction capability in the fault calculations and reduction in the area which reduces the cost of implementation.Faults were introduced in all the outputs of the functional filters and found that the fault in every output is corrected. 展开更多
关键词 Fault tolerance FILTERS efficiency REDUNDANCY image denoising error correction codes double modular redundancy
下载PDF
Classification Model for IDS Using Auto Cryptographic Denoising Technique
20
作者 N.Karthikeyan P.Sivaprakash S.Karthik 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期671-685,共15页
Intrusion detection systems(IDS)are one of the most promising ways for securing data and networks;In recent decades,IDS has used a variety of categorization algorithms.These classifiers,on the other hand,do not work e... Intrusion detection systems(IDS)are one of the most promising ways for securing data and networks;In recent decades,IDS has used a variety of categorization algorithms.These classifiers,on the other hand,do not work effectively unless they are combined with additional algorithms that can alter the classifier’s parameters or select the optimal sub-set of features for the problem.Optimizers are used in tandem with classifiers to increase the stability and with efficiency of the classifiers in detecting invasion.These algorithms,on the other hand,have a number of limitations,particularly when used to detect new types of threats.In this paper,the NSL KDD dataset and KDD Cup 99 is used to find the performance of the proposed classifier model and compared;These two IDS dataset is preprocessed,then Auto Cryptographic Denoising(ACD)adopted to remove noise in the feature of the IDS dataset;the classifier algorithms,K-Means and Neural network classifies the dataset with adam optimizer.IDS classifier is evaluated by measuring performance measures like f-measure,recall,precision,detection rate and accuracy.The neural network obtained the highest classifying accuracy as 91.12%with drop-out function that shows the efficiency of the classifier model with drop-out function for KDD Cup99 dataset.Explaining their power and limitations in the proposed methodology that could be used in future works in the IDS area. 展开更多
关键词 Auto cryptographic denoising(ACD) classifier intrusion detection system(IDS) OPTIMIZER performance measures
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部