ive Arabic Text Summarization using Hyperparameter Tuned Denoising Deep Neural Network(AATS-HTDDNN)technique.The presented AATS-HTDDNN technique aims to generate summaries of Arabic text.In the presented AATS-HTDDNN t...ive Arabic Text Summarization using Hyperparameter Tuned Denoising Deep Neural Network(AATS-HTDDNN)technique.The presented AATS-HTDDNN technique aims to generate summaries of Arabic text.In the presented AATS-HTDDNN technique,the DDNN model is utilized to generate the summary.This study exploits the Chameleon Swarm Optimization(CSO)algorithm to fine-tune the hyperparameters relevant to the DDNN model since it considerably affects the summarization efficiency.This phase shows the novelty of the current study.To validate the enhanced summarization performance of the proposed AATS-HTDDNN model,a comprehensive experimental analysis was conducted.The comparison study outcomes confirmed the better performance of the AATS-HTDDNN model over other approaches.展开更多
Against the background of regular epidemic prevention and control,in order to ensure the return of teachers to work,students to return to school and safe operation of schools,the risk of disease transmission is analyz...Against the background of regular epidemic prevention and control,in order to ensure the return of teachers to work,students to return to school and safe operation of schools,the risk of disease transmission is analyzed in key areas such as university canoons,auditoriums,teaching buildings and dormitories.The risk model of epidemic transmission in key regions of universities is established based on the improved SEIR model,considering the four groups of people,namely susceptible,latent,infected and displaced,and their mutual transformation relationship.After feature post-processing,the selected feature parameters are processed with monotone non-decreasing and smoothing,and used as noise-free samples of stacked sparse denoising automatic coding network to train the network.Then,the feature vectors after dimensionality reduction of the stacked sparse denoising automatic coding network are used as the input of the multi-hidden layer back-propagation neural network,and these features are used as tags to carry out fitting training for the network.The results show that the implementation of control measures can reduce the number of contacts between infected people and susceptible people,reduce the transmission rate of single contact,and reduce the peak number of infected people and latent people by 61%and 72%respectively,effectively controlling the disease spread in key regions of universities.Our method is able to accurately predict the number of infections.展开更多
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R281)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia+1 种基金The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:22UQU4210118DSR33The authors are thankful to the Deanship of ScientificResearch atNajranUniversity for funding thiswork under theResearch Groups Funding Program Grant Code(NU/RG/SERC/11/7).
文摘ive Arabic Text Summarization using Hyperparameter Tuned Denoising Deep Neural Network(AATS-HTDDNN)technique.The presented AATS-HTDDNN technique aims to generate summaries of Arabic text.In the presented AATS-HTDDNN technique,the DDNN model is utilized to generate the summary.This study exploits the Chameleon Swarm Optimization(CSO)algorithm to fine-tune the hyperparameters relevant to the DDNN model since it considerably affects the summarization efficiency.This phase shows the novelty of the current study.To validate the enhanced summarization performance of the proposed AATS-HTDDNN model,a comprehensive experimental analysis was conducted.The comparison study outcomes confirmed the better performance of the AATS-HTDDNN model over other approaches.
基金supported by Key research Project of higher education institutions in Henan Province(Project:Name:A Study on Students’concentration in Class Based on Deep Multi-task Learning Framework,Project No.23B413004)the Science and Technology Project No.222102310222.
文摘Against the background of regular epidemic prevention and control,in order to ensure the return of teachers to work,students to return to school and safe operation of schools,the risk of disease transmission is analyzed in key areas such as university canoons,auditoriums,teaching buildings and dormitories.The risk model of epidemic transmission in key regions of universities is established based on the improved SEIR model,considering the four groups of people,namely susceptible,latent,infected and displaced,and their mutual transformation relationship.After feature post-processing,the selected feature parameters are processed with monotone non-decreasing and smoothing,and used as noise-free samples of stacked sparse denoising automatic coding network to train the network.Then,the feature vectors after dimensionality reduction of the stacked sparse denoising automatic coding network are used as the input of the multi-hidden layer back-propagation neural network,and these features are used as tags to carry out fitting training for the network.The results show that the implementation of control measures can reduce the number of contacts between infected people and susceptible people,reduce the transmission rate of single contact,and reduce the peak number of infected people and latent people by 61%and 72%respectively,effectively controlling the disease spread in key regions of universities.Our method is able to accurately predict the number of infections.