Wolfson and Xu Yonghua both discussed the abstract characterizations of full linear transformation rings and obtained two necessary and sufficient conditions for an abstract ring to be isomorphic to a full linear tran...Wolfson and Xu Yonghua both discussed the abstract characterizations of full linear transformation rings and obtained two necessary and sufficient conditions for an abstract ring to be isomorphic to a full linear transformation ring respec-tively in different ways. Based on their works, this paper continues the展开更多
本文我们考察了远达点的唯—性,主要证明了下面两定理:①若 E 是严格凸 Banach 空间,K 是 M 紧闭集,则 T_K={z∈E,Q_K(z)为单点)是 E 中稠 G_4子集;②设 E 是自反、Kadec 和严格凸的 Banach 空同,K 是 E 中有界闭子集,则 T_K 含有 E 中...本文我们考察了远达点的唯—性,主要证明了下面两定理:①若 E 是严格凸 Banach 空间,K 是 M 紧闭集,则 T_K={z∈E,Q_K(z)为单点)是 E 中稠 G_4子集;②设 E 是自反、Kadec 和严格凸的 Banach 空同,K 是 E 中有界闭子集,则 T_K 含有 E 中稠 G_4子集.其中②肯定回答了我们所提的 Steckin 型问题。展开更多
基金Supported by the natural science research foundation itemof Anhui Province(99047217)thenatural science researchfoundationitemof Anhui Province Depart ment of Education(2005KJ399) .
文摘Wolfson and Xu Yonghua both discussed the abstract characterizations of full linear transformation rings and obtained two necessary and sufficient conditions for an abstract ring to be isomorphic to a full linear transformation ring respec-tively in different ways. Based on their works, this paper continues the
文摘本文我们考察了远达点的唯—性,主要证明了下面两定理:①若 E 是严格凸 Banach 空间,K 是 M 紧闭集,则 T_K={z∈E,Q_K(z)为单点)是 E 中稠 G_4子集;②设 E 是自反、Kadec 和严格凸的 Banach 空同,K 是 E 中有界闭子集,则 T_K 含有 E 中稠 G_4子集.其中②肯定回答了我们所提的 Steckin 型问题。