In this paper,we propose a low complexity spectrum resource allocation scheme cross the access points(APs)for the ultra dense networks(UDNs),in which all the APs are divided into several AP groups(APGs)and the total b...In this paper,we propose a low complexity spectrum resource allocation scheme cross the access points(APs)for the ultra dense networks(UDNs),in which all the APs are divided into several AP groups(APGs)and the total bandwidth is divided into several narrow band spectrum resources and each spectrum resource is allocated to APGs independently to decrease the interference among the cells.Furthermore,we investigate the joint spectrum and power allocation problem in UDNs to maximize the overall throughput.The problem is formulated as a mixed-integer nonconvex optimization(MINCP)problem which is difficult to solve in general.The joint optimization problem is decomposed into two subproblems in terms of the spectrum allocation and power allocation respectively.For the spectrum allocation,we model it as a auction problem and a combinatorial auction approach is proposed to tackle it.In addition,the DC programming method is adopted to optimize the power allocation subproblem.To decrease the signaling and computational overhead,we propose a distributed algorithm based on the Lagrangian dual method.Simulation results illustrate that the proposed algorithm can effectively improve the system throughput.展开更多
Next-generation networks,including the Internet of Things(IoT),fifth-generation cellular systems(5G),and sixth-generation cellular systems(6G),suf-fer from the dramatic increase of the number of deployed devices.This p...Next-generation networks,including the Internet of Things(IoT),fifth-generation cellular systems(5G),and sixth-generation cellular systems(6G),suf-fer from the dramatic increase of the number of deployed devices.This puts high constraints and challenges on the design of such networks.Structural changing of the network is one of such challenges that affect the network performance,includ-ing the required quality of service(QoS).The fractal dimension(FD)is consid-ered one of the main indicators used to represent the structure of the communication network.To this end,this work analyzes the FD of the network and its use for telecommunication networks investigation and planning.The clus-ter growing method for assessing the FD is introduced and analyzed.The article proposes a novel method for estimating the FD of a communication network,based on assessing the network’s connectivity,by searching for the shortest routes.Unlike the cluster growing method,the proposed method does not require multiple iterations,which reduces the number of calculations,and increases the stability of the results obtained.Thus,the proposed method requires less compu-tational cost than the cluster growing method and achieves higher stability.The method is quite simple to implement and can be used in the tasks of research and planning of modern and promising communication networks.The developed method is evaluated for two different network structures and compared with the cluster growing method.Results validate the developed method.展开更多
5G sets an ambitious goal of increasing the capacity per area of current 4G network by 1000 fold. Due to the high splitting gain of dense small cells, ultra dense network(UDN) is widely considered as a key component i...5G sets an ambitious goal of increasing the capacity per area of current 4G network by 1000 fold. Due to the high splitting gain of dense small cells, ultra dense network(UDN) is widely considered as a key component in achieving this goal. In this paper, we outline the main challenges that come with dense cell deployment, including interference, mobility, power consumption and backhaul. Technologies designed to tackle these challenges in long term evolution system(LTE) and their deficiencies in UDN context are also analyzed. To combat these challenges more efficiently, a series of technologies are introduced along with some of our initial research results. Moreover, the trends of user-centric and peer-to-peer design in UDN are also elaborated.展开更多
Drone applications in 5th generation(5G)networks mainly focus on services and use cases such as providing connectivity during crowded events,human-instigated disasters,unmanned aerial vehicle traffic management,intern...Drone applications in 5th generation(5G)networks mainly focus on services and use cases such as providing connectivity during crowded events,human-instigated disasters,unmanned aerial vehicle traffic management,internet of things in the sky,and situation awareness.4G and 5G cellular networks face various challenges to ensure dynamic control and safe mobility of the drone when it is tasked with delivering these services.The drone can fly in three-dimensional space.The drone connectivity can suffer from increased handover cost due to several reasons,including variations in the received signal strength indicator,co-channel interference offered to the drone by neighboring cells,and abrupt drop in lobe edge signals due to antenna nulls.The baseline greedy handover algorithm only ensures the strongest connection between the drone and small cells so that the drone may experience several handovers.Intended for fast environment learning,machine learning techniques such as Q-learning help the drone fly with minimum handover cost along with robust connectivity.In this study,we propose a Q-learning-based approach evaluated in three different scenarios.The handover decision is optimized gradually using Q-learning to provide efficient mobility support with high data rate in time-sensitive applications,tactile internet,and haptics communication.Simulation results demonstrate that the proposed algorithm can effectively minimize the handover cost in a learning environment.This work presents a notable contribution to determine the optimal route of drones for researchers who are exploring UAV use cases in cellular networks where a large testing site comprised of several cells with multiple UAVs is under consideration.展开更多
Single object tracking based on deep learning has achieved the advanced performance in many applications of computer vision.However,the existing trackers have certain limitations owing to deformation,occlusion,movemen...Single object tracking based on deep learning has achieved the advanced performance in many applications of computer vision.However,the existing trackers have certain limitations owing to deformation,occlusion,movement and some other conditions.We propose a siamese attentional dense network called SiamADN in an end-to-end offline manner,especially aiming at unmanned aerial vehicle(UAV)tracking.First,it applies a dense network to reduce vanishing-gradient,which strengthens the features transfer.Second,the channel attention mechanism is involved into the Densenet structure,in order to focus on the possible key regions.The advance corner detection network is introduced to improve the following tracking process.Extensive experiments are carried out on four mainly tracking benchmarks as OTB-2015,UAV123,LaSOT and VOT.The accuracy rate on UAV123 is 78.9%,and the running speed is 32 frame per second(FPS),which demonstrates its efficiency in the practical real application.展开更多
Electrocardiogram(ECG)signal is one of the noninvasive physiological measurement techniques commonly usedin cardiac diagnosis.However,in real scenarios,the ECGsignal is susceptible to various noise erosion,which affec...Electrocardiogram(ECG)signal is one of the noninvasive physiological measurement techniques commonly usedin cardiac diagnosis.However,in real scenarios,the ECGsignal is susceptible to various noise erosion,which affectsthe subsequent pathological analysis.Therefore,the effective removal of the noise from ECG signals has becomea top priority in cardiac diagnostic research.Aiming at the problem of incomplete signal shape retention andlow signal-to-noise ratio(SNR)after denoising,a novel ECG denoising network,named attention-based residualdense shrinkage network(ARDSN),is proposed in this paper.Firstly,the shallow ECG characteristics are extractedby a shallow feature extraction network(SFEN).Then,the residual dense shrinkage attention block(RDSAB)isused for adaptive noise suppression.Finally,feature fusion representation(FFR)is performed on the hierarchicalfeatures extracted by a series of RDSABs to reconstruct the de-noised ECG signal.Experiments on the MIT-BIHarrhythmia database and MIT-BIH noise stress test database indicate that the proposed scheme can effectively resistthe interference of different sources of noise on the ECG signal.展开更多
Bone age assessment(BAA)helps doctors determine how a child’s bones grow and develop in clinical medicine.Traditional BAA methods rely on clinician expertise,leading to time-consuming predictions and inaccurate resul...Bone age assessment(BAA)helps doctors determine how a child’s bones grow and develop in clinical medicine.Traditional BAA methods rely on clinician expertise,leading to time-consuming predictions and inaccurate results.Most deep learning-based BAA methods feed the extracted critical points of images into the network by providing additional annotations.This operation is costly and subjective.To address these problems,we propose a multi-scale attentional densely connected network(MSADCN)in this paper.MSADCN constructs a multi-scale dense connectivity mechanism,which can avoid overfitting,obtain the local features effectively and prevent gradient vanishing even in limited training data.First,MSADCN designs multi-scale structures in the densely connected network to extract fine-grained features at different scales.Then,coordinate attention is embedded to focus on critical features and automatically locate the regions of interest(ROI)without additional annotation.In addition,to improve the model’s generalization,transfer learning is applied to train the proposed MSADCN on the public dataset IMDB-WIKI,and the obtained pre-trained weights are loaded onto the Radiological Society of North America(RSNA)dataset.Finally,label distribution learning(LDL)and expectation regression techniques are introduced into our model to exploit the correlation between hand bone images of different ages,which can obtain stable age estimates.Extensive experiments confirm that our model can converge more efficiently and obtain a mean absolute error(MAE)of 4.64 months,outperforming some state-of-the-art BAA methods.展开更多
In this paper,we reveal the fundamental limitation of network densification on the performance of caching enabled small cell network(CSCN)under two typical user association rules,namely,contentand distance-based rules...In this paper,we reveal the fundamental limitation of network densification on the performance of caching enabled small cell network(CSCN)under two typical user association rules,namely,contentand distance-based rules.It indicates that immoderately caching content would significantly change the interference distribution in CSCN,which may degrade the network area spectral efficiency(ASE).Meanwhile,it is shown that content-based rule outperforms the distance-based rule in terms of network ASE only when small cell base stations(BSs)are sparsely deployed with low decoding thresholds.Moreover,it is proved that network ASE under distance-based user association serves as the upper bound of that under content-based rule in dense BS regime.To enable more spectrum-efficient user association in dense CSCN,we further optimize network ASE by designing a probabilistic content retrieving strategy based on distance-based rule.With the optimized retrieving probability,network ASE could be substantially enhanced and even increase with the growing BS density in dense BS regime.展开更多
For the dense macro-femto coexistence networks scenario, a long-term-based handover(LTBH) algorithm is proposed. The handover decision algorithm is jointly determined by the angle of handover(AHO) and the time-tos...For the dense macro-femto coexistence networks scenario, a long-term-based handover(LTBH) algorithm is proposed. The handover decision algorithm is jointly determined by the angle of handover(AHO) and the time-tostay(TTS) to reduce the unnecessary handover numbers.First, the proposed AHO parameter is used to decrease the computation complexity in multiple candidate base stations(CBSs) scenario. Then, two types of TTS parameters are given for the fixed base stations and mobile base stations to make handover decisions among multiple CBSs. The simulation results show that the proposed LTBH algorithm can not only maintain the required transmission rate of users, but also effectively reduce the unnecessary numbers of handover in the dense macro-femto networks with the coexisting mobile BSs.展开更多
The high-density population leads to crowded cities. The future city is envisaged to encompass a large-scale network with diverse applications and a massive number of interconnected heterogeneous wireless-enabled devi...The high-density population leads to crowded cities. The future city is envisaged to encompass a large-scale network with diverse applications and a massive number of interconnected heterogeneous wireless-enabled devices. Hence, green technology elements are crucial to design sustainable and future-proof network architectures. They are the solutions for spectrum scarcity, high latency, interference, energy efficiency, and scalability that occur in dense and heterogeneous wireless networks especially in the home area network (HAN). Radio-over-fiber (ROF) is a technology candidate to provide a global view of HAN's activities that can be leveraged to allocate orthogonal channel communications for enabling wireless-enabled HAN devices transmission, with considering the clustered-frequency-reuse approach. Our proposed network architecture design is mainly focused on enhancing the network throughput and reducing the average network communications latency by proposing a data aggregation unit (DAU). The performance shows that with the DAU, the average network communications latency reduces significantly while the network throughput is enhanced, compared with the existing ROF architecture without the DAU.展开更多
Early diagnosis and detection are important tasks in controlling the spread of COVID-19.A number of Deep Learning techniques has been established by researchers to detect the presence of COVID-19 using CT scan images ...Early diagnosis and detection are important tasks in controlling the spread of COVID-19.A number of Deep Learning techniques has been established by researchers to detect the presence of COVID-19 using CT scan images and X-rays.However,these methods suffer from biased results and inaccurate detection of the disease.So,the current research article developed Oppositional-based Chimp Optimization Algorithm and Deep Dense Convolutional Neural Network(OCOA-DDCNN)for COVID-19 prediction using CT images in IoT environment.The proposed methodology works on the basis of two stages such as pre-processing and prediction.Initially,CT scan images generated from prospective COVID-19 are collected from open-source system using IoT devices.The collected images are then preprocessed using Gaussian filter.Gaussian filter can be utilized in the removal of unwanted noise from the collected CT scan images.Afterwards,the preprocessed images are sent to prediction phase.In this phase,Deep Dense Convolutional Neural Network(DDCNN)is applied upon the pre-processed images.The proposed classifier is optimally designed with the consideration of Oppositional-basedChimp Optimization Algorithm(OCOA).This algorithm is utilized in the selection of optimal parameters for the proposed classifier.Finally,the proposed technique is used in the prediction of COVID-19 and classify the results as either COVID-19 or non-COVID-19.The projected method was implemented in MATLAB and the performances were evaluated through statistical measurements.The proposed method was contrasted with conventional techniques such as Convolutional Neural Network-Firefly Algorithm(CNN-FA),Emperor Penguin Optimization(CNN-EPO)respectively.The results established the supremacy of the proposed model.展开更多
Notwithstanding the discovery of vaccines for Covid-19, the virus'srapid spread continues due to the limited availability of vaccines, especially inpoor and emerging countries. Therefore, the key issues in the pre...Notwithstanding the discovery of vaccines for Covid-19, the virus'srapid spread continues due to the limited availability of vaccines, especially inpoor and emerging countries. Therefore, the key issues in the presentCOVID-19 pandemic are the early identification of COVID-19, the cautiousseparation of infected cases at the lowest cost and curing the disease in the earlystages. For that reason, the methodology adopted for this study is imaging tools,particularly computed tomography, which have been critical in diagnosing andtreating the disease. A new method for detecting Covid-19 in X-rays and CTimages has been presented based on the Scatter Wavelet Transform and DenseDeep Neural Network. The Scatter Wavelet Transform has been employed as afeature extractor, while the Dense Deep Neural Network is utilized as a binaryclassifier. An extensive experiment was carried out to evaluate the accuracy ofthe proposed method over three datasets: IEEE 80200, Kaggle, andCovid-19 X-ray image data Sets. The dataset used in the experimental part consists of 14142. The numbers of training and testing images are 8290 and 2810,respectively. The analysis of the result refers that the proposed methods achievedhigh accuracy of 98%. The proposed model results show an excellent outcomecompared to other methods in the same domain, such as (DeTraC) CNN, whichachieved only 93.1%, CNN, which achieved 94%, and stacked Multi-ResolutionCovXNet, which achieved 97.4%. The accuracy of CapsNet reached 97.24%.展开更多
The end-to-end separation algorithm with superior performance in the field of speech separation has not been effectively used in music separation.Moreover,since music signals are often dual channel data with a high sa...The end-to-end separation algorithm with superior performance in the field of speech separation has not been effectively used in music separation.Moreover,since music signals are often dual channel data with a high sampling rate,how to model longsequence data and make rational use of the relevant information between channels is also an urgent problem to be solved.In order to solve the above problems,the performance of the end-to-end music separation algorithm is enhanced by improving the network structure.Our main contributions include the following:(1)A more reasonable densely connected U-Net is designed to capture the long-term characteristics of music,such as main melody,tone and so on.(2)On this basis,the multi-head attention and dualpath transformer are introduced in the separation module.Channel attention units are applied recursively on the feature map of each layer of the network,enabling the network to perform long-sequence separation.Experimental results show that after the introduction of the channel attention,the performance of the proposed algorithm has a stable improvement compared with the baseline system.On the MUSDB18 dataset,the average score of the separated audio exceeds that of the current best-performing music separation algorithm based on the time-frequency domain(T-F domain).展开更多
The field of finance heavily relies on cybersecurity to safeguard its systems and clients from harmful software.The identification of malevolent code within financial software is vital for protecting both the financia...The field of finance heavily relies on cybersecurity to safeguard its systems and clients from harmful software.The identification of malevolent code within financial software is vital for protecting both the financial system and individual clients.Nevertheless,present detection models encounter limitations in their ability to identify malevolent code and its variations,all while encompassing a multitude of parameters.To overcome these obsta-cles,we introduce a lean model for classifying families of malevolent code,formulated on Ghost-DenseNet-SE.This model integrates the Ghost module,DenseNet,and the squeeze-and-excitation(SE)channel domain attention mechanism.It substitutes the standard convolutional layer in DenseNet with the Ghost module,thereby diminishing the model’s size and augmenting recognition speed.Additionally,the channel domain attention mechanism assigns distinctive weights to feature channels,facilitating the extraction of pivotal characteristics of malevolent code and bolstering detection precision.Experimental outcomes on the Malimg dataset indicate that the model attained an accuracy of 99.14%in discerning families of malevolent code,surpassing AlexNet(97.8%)and The visual geometry group network(VGGNet)(96.16%).The proposed model exhibits reduced parameters,leading to decreased model complexity alongside enhanced classification accuracy,rendering it a valuable asset for categorizing malevolent code.展开更多
Automatic road damage detection using image processing is an important aspect of road maintenance.It is also a challenging problem due to the inhomogeneity of road damage and complicated background in the road images....Automatic road damage detection using image processing is an important aspect of road maintenance.It is also a challenging problem due to the inhomogeneity of road damage and complicated background in the road images.In recent years,deep convolutional neural network based methods have been used to address the challenges of road damage detection and classification.In this paper,we propose a new approach to address those challenges.This approach uses densely connected convolution networks as the backbone of the Mask R-CNN to effectively extract image feature,a feature pyramid network for combining multiple scales features,a region proposal network to generate the road damage region,and a fully convolutional neural network to classify the road damage region and refine the region bounding box.This method can not only detect and classify the road damage,but also create a mask of the road damage.Experimental results show that the proposed approach can achieve better results compared with other existing methods.展开更多
Technological advancements continue to expand the communications industry’s potential.Images,which are an important component in strengthening communication,are widely available.Therefore,image quality assessment(IQA...Technological advancements continue to expand the communications industry’s potential.Images,which are an important component in strengthening communication,are widely available.Therefore,image quality assessment(IQA)is critical in improving content delivered to end users.Convolutional neural networks(CNNs)used in IQA face two common challenges.One issue is that these methods fail to provide the best representation of the image.The other issue is that the models have a large number of parameters,which easily leads to overfitting.To address these issues,the dense convolution network(DSC-Net),a deep learning model with fewer parameters,is proposed for no-reference image quality assessment(NR-IQA).Moreover,it is obvious that the use of multimodal data for deep learning has improved the performance of applications.As a result,multimodal dense convolution network(MDSC-Net)fuses the texture features extracted using the gray-level co-occurrence matrix(GLCM)method and spatial features extracted using DSC-Net and predicts the image quality.The performance of the proposed framework on the benchmark synthetic datasets LIVE,TID2013,and KADID-10k demonstrates that the MDSC-Net approach achieves good performance over state-of-the-art methods for the NR-IQA task.展开更多
Intrusion Detection Systems (IDS) are pivotal in safeguarding computer networks from malicious activities. This study presents a novel approach by proposing a Hybrid Dense Neural Network-Radial Basis Function Neural N...Intrusion Detection Systems (IDS) are pivotal in safeguarding computer networks from malicious activities. This study presents a novel approach by proposing a Hybrid Dense Neural Network-Radial Basis Function Neural Network (DNN-RBFNN) architecture to enhance the accuracy and efficiency of IDS. The hybrid model synergizes the strengths of both dense learning and radial basis function networks, aiming to address the limitations of traditional IDS techniques in classifying packets that could result in Remote-to-local (R2L), Denial of Service (Dos), and User-to-root (U2R) intrusions.展开更多
Recently cellular networks have been densely and heterogeneously deployed indoors and outdoors to expand the network capacity,and thus the in-building propagation loss and the transmit power diversity of access points...Recently cellular networks have been densely and heterogeneously deployed indoors and outdoors to expand the network capacity,and thus the in-building propagation loss and the transmit power diversity of access points will exacerbate link heterogeneity and result in partial unidirectional strong interference.To make full use of the strong interference feature,we propose the successive interference cancellation and alignment(SICA)scheme in the K-user interference channel with partial unidirectional strong interference.SICA is designed to transmit two kinds of data streams simultaneously,the alignment streams and superposition streams.The alignment streams will follow the interference alignment criterion to maintain the optimal degrees of freedom(DoF)performance;the superposition streams are handled via successive interference cancellation at all the strongly interfered receivers to improve the overall achievable rate.The joint transceiver designs for SICA is modeled as a weighted sum rate(WSR)maximization problem,and then can be alternately solved for a local optimum according to the optimality equivalence between WSR and its corresponding weighted mean square error(WMMSE)problem.Simulation results have confirmed the sum rate improvement and DoF optimality of the proposed SICA scheme.展开更多
BACKGROUND The nature of input data is an essential factor when training neural networks.Research concerning magnetic resonance imaging(MRI)-based diagnosis of liver tumors using deep learning has been rapidly advanci...BACKGROUND The nature of input data is an essential factor when training neural networks.Research concerning magnetic resonance imaging(MRI)-based diagnosis of liver tumors using deep learning has been rapidly advancing.Still,evidence to support the utilization of multi-dimensional and multi-parametric image data is lacking.Due to higher information content,three-dimensional input should presumably result in higher classification precision.Also,the differentiation between focal liver lesions(FLLs)can only be plausible with simultaneous analysis of multisequence MRI images.AIM To compare diagnostic efficiency of two-dimensional(2D)and three-dimensional(3D)-densely connected convolutional neural networks(DenseNet)for FLLs on multi-sequence MRI.METHODS We retrospectively collected T2-weighted,gadoxetate disodium-enhanced arterial phase,portal venous phase,and hepatobiliary phase MRI scans from patients with focal nodular hyperplasia(FNH),hepatocellular carcinomas(HCC)or liver metastases(MET).Our search identified 71 FNH,69 HCC and 76 MET.After volume registration,the same three most representative axial slices from all sequences were combined into four-channel images to train the 2D-DenseNet264 network.Identical bounding boxes were selected on all scans and stacked into 4D volumes to train the 3D-DenseNet264 model.The test set consisted of 10-10-10 tumors.The performance of the models was compared using area under the receiver operating characteristic curve(AUROC),specificity,sensitivity,positive predictive values(PPV),negative predictive values(NPV),and f1 scores.RESULTS The average AUC value of the 2D model(0.98)was slightly higher than that of the 3D model(0.94).Mean PPV,sensitivity,NPV,specificity and f1 scores(0.94,0.93,0.97,0.97,and 0.93)of the 2D model were also superior to metrics of the 3D model(0.84,0.83,0.92,0.92,and 0.83).The classification metrics of FNH were 0.91,1.00,1.00,0.95,and 0.95 using the 2D and 0.90,0.90,0.95,0.95,and 0.90 using the 3D models.The 2D and 3D networks'performance in the diagnosis of HCC were 1.00,0.80,0.91,1.00,and 0.89 and 0.88,0.70,0.86,0.95,and 0.78,respectively;while the evaluation of MET lesions resulted in 0.91,1.00,1.00,0.95,and 0.95 and 0.75,0.90,0.94,0.85,and 0.82 using the 2D and 3D networks,respectively.CONCLUSION Both 2D and 3D-DenseNets can differentiate FNH,HCC and MET with good accuracy when trained on hepatocyte-specific contrast-enhanced multi-sequence MRI volumes.展开更多
Due to effectiveness of network layer on general performance of networks, designing routing protocols is very important for lifetime and traffic efficiency in wireless sensor networks. So in this paper, we are going t...Due to effectiveness of network layer on general performance of networks, designing routing protocols is very important for lifetime and traffic efficiency in wireless sensor networks. So in this paper, we are going to represent an efficient and scalable version of depth-based routing (DBR) protocol that is limited by depth divisions-policy. In fact the new version is a network information independent routing protocol for acoustic communications. Proposed method by use of depth clustering is able to reduce consumed energy and end-to-end delay in dense underwater sensor networks (DUSNs) and this issue is proved by simulation.展开更多
基金supported in part by the Guangxi Natural Science Foundation under Grant 2021GXNSFBA196076in part by the General Project of Guangxi Natural Science Foundation Project(Guangdong-Guangxi Joint Fund Project)under Grant 2021GXNSFAA075031+1 种基金in part by the basic ability improvement project of young and middle-aged teachers in Guangxi Universities under Grant 2022KY0579in part by the Guangxi Key Laboratory of Precision Navigation Technology and Application,Guilin University of Electronic Technology under Grant DH202007.
文摘In this paper,we propose a low complexity spectrum resource allocation scheme cross the access points(APs)for the ultra dense networks(UDNs),in which all the APs are divided into several AP groups(APGs)and the total bandwidth is divided into several narrow band spectrum resources and each spectrum resource is allocated to APGs independently to decrease the interference among the cells.Furthermore,we investigate the joint spectrum and power allocation problem in UDNs to maximize the overall throughput.The problem is formulated as a mixed-integer nonconvex optimization(MINCP)problem which is difficult to solve in general.The joint optimization problem is decomposed into two subproblems in terms of the spectrum allocation and power allocation respectively.For the spectrum allocation,we model it as a auction problem and a combinatorial auction approach is proposed to tackle it.In addition,the DC programming method is adopted to optimize the power allocation subproblem.To decrease the signaling and computational overhead,we propose a distributed algorithm based on the Lagrangian dual method.Simulation results illustrate that the proposed algorithm can effectively improve the system throughput.
基金supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R66),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Next-generation networks,including the Internet of Things(IoT),fifth-generation cellular systems(5G),and sixth-generation cellular systems(6G),suf-fer from the dramatic increase of the number of deployed devices.This puts high constraints and challenges on the design of such networks.Structural changing of the network is one of such challenges that affect the network performance,includ-ing the required quality of service(QoS).The fractal dimension(FD)is consid-ered one of the main indicators used to represent the structure of the communication network.To this end,this work analyzes the FD of the network and its use for telecommunication networks investigation and planning.The clus-ter growing method for assessing the FD is introduced and analyzed.The article proposes a novel method for estimating the FD of a communication network,based on assessing the network’s connectivity,by searching for the shortest routes.Unlike the cluster growing method,the proposed method does not require multiple iterations,which reduces the number of calculations,and increases the stability of the results obtained.Thus,the proposed method requires less compu-tational cost than the cluster growing method and achieves higher stability.The method is quite simple to implement and can be used in the tasks of research and planning of modern and promising communication networks.The developed method is evaluated for two different network structures and compared with the cluster growing method.Results validate the developed method.
文摘5G sets an ambitious goal of increasing the capacity per area of current 4G network by 1000 fold. Due to the high splitting gain of dense small cells, ultra dense network(UDN) is widely considered as a key component in achieving this goal. In this paper, we outline the main challenges that come with dense cell deployment, including interference, mobility, power consumption and backhaul. Technologies designed to tackle these challenges in long term evolution system(LTE) and their deficiencies in UDN context are also analyzed. To combat these challenges more efficiently, a series of technologies are introduced along with some of our initial research results. Moreover, the trends of user-centric and peer-to-peer design in UDN are also elaborated.
基金This work was supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.2018R1D1A1B07049877)and the Strengthening R&D Capability Program of Sejong University.
文摘Drone applications in 5th generation(5G)networks mainly focus on services and use cases such as providing connectivity during crowded events,human-instigated disasters,unmanned aerial vehicle traffic management,internet of things in the sky,and situation awareness.4G and 5G cellular networks face various challenges to ensure dynamic control and safe mobility of the drone when it is tasked with delivering these services.The drone can fly in three-dimensional space.The drone connectivity can suffer from increased handover cost due to several reasons,including variations in the received signal strength indicator,co-channel interference offered to the drone by neighboring cells,and abrupt drop in lobe edge signals due to antenna nulls.The baseline greedy handover algorithm only ensures the strongest connection between the drone and small cells so that the drone may experience several handovers.Intended for fast environment learning,machine learning techniques such as Q-learning help the drone fly with minimum handover cost along with robust connectivity.In this study,we propose a Q-learning-based approach evaluated in three different scenarios.The handover decision is optimized gradually using Q-learning to provide efficient mobility support with high data rate in time-sensitive applications,tactile internet,and haptics communication.Simulation results demonstrate that the proposed algorithm can effectively minimize the handover cost in a learning environment.This work presents a notable contribution to determine the optimal route of drones for researchers who are exploring UAV use cases in cellular networks where a large testing site comprised of several cells with multiple UAVs is under consideration.
基金supported by the Zhejiang Key Laboratory of General Aviation Operation Technology(No.JDGA2020-7)the National Natural Science Foundation of China(No.62173237)+3 种基金the Natural Science Foundation of Liaoning Province(No.2019-MS-251)the Talent Project of Revitalization Liaoning Province(No.XLYC1907022)the Key R&D Projects of Liaoning Province(No.2020JH2/10100045)the High-Level Innovation Talent Project of Shenyang(No.RC190030).
文摘Single object tracking based on deep learning has achieved the advanced performance in many applications of computer vision.However,the existing trackers have certain limitations owing to deformation,occlusion,movement and some other conditions.We propose a siamese attentional dense network called SiamADN in an end-to-end offline manner,especially aiming at unmanned aerial vehicle(UAV)tracking.First,it applies a dense network to reduce vanishing-gradient,which strengthens the features transfer.Second,the channel attention mechanism is involved into the Densenet structure,in order to focus on the possible key regions.The advance corner detection network is introduced to improve the following tracking process.Extensive experiments are carried out on four mainly tracking benchmarks as OTB-2015,UAV123,LaSOT and VOT.The accuracy rate on UAV123 is 78.9%,and the running speed is 32 frame per second(FPS),which demonstrates its efficiency in the practical real application.
基金the National Natural Science Foundation of China under Grant 62172059 and 62072055Hunan Provincial Natural Science Foundations of China under Grant 2022JJ50318 and 2022JJ30621Scientific Research Fund of Hunan Provincial Education Department of China under Grant 22A0200 and 20K098。
文摘Electrocardiogram(ECG)signal is one of the noninvasive physiological measurement techniques commonly usedin cardiac diagnosis.However,in real scenarios,the ECGsignal is susceptible to various noise erosion,which affectsthe subsequent pathological analysis.Therefore,the effective removal of the noise from ECG signals has becomea top priority in cardiac diagnostic research.Aiming at the problem of incomplete signal shape retention andlow signal-to-noise ratio(SNR)after denoising,a novel ECG denoising network,named attention-based residualdense shrinkage network(ARDSN),is proposed in this paper.Firstly,the shallow ECG characteristics are extractedby a shallow feature extraction network(SFEN).Then,the residual dense shrinkage attention block(RDSAB)isused for adaptive noise suppression.Finally,feature fusion representation(FFR)is performed on the hierarchicalfeatures extracted by a series of RDSABs to reconstruct the de-noised ECG signal.Experiments on the MIT-BIHarrhythmia database and MIT-BIH noise stress test database indicate that the proposed scheme can effectively resistthe interference of different sources of noise on the ECG signal.
基金This research is partially supported by grant from the National Natural Science Foundation of China(No.72071019)grant from the Natural Science Foundation of Chongqing(No.cstc2021jcyj-msxmX0185)grant from the Chongqing Graduate Education and Teaching Reform Research Project(No.yjg193096).
文摘Bone age assessment(BAA)helps doctors determine how a child’s bones grow and develop in clinical medicine.Traditional BAA methods rely on clinician expertise,leading to time-consuming predictions and inaccurate results.Most deep learning-based BAA methods feed the extracted critical points of images into the network by providing additional annotations.This operation is costly and subjective.To address these problems,we propose a multi-scale attentional densely connected network(MSADCN)in this paper.MSADCN constructs a multi-scale dense connectivity mechanism,which can avoid overfitting,obtain the local features effectively and prevent gradient vanishing even in limited training data.First,MSADCN designs multi-scale structures in the densely connected network to extract fine-grained features at different scales.Then,coordinate attention is embedded to focus on critical features and automatically locate the regions of interest(ROI)without additional annotation.In addition,to improve the model’s generalization,transfer learning is applied to train the proposed MSADCN on the public dataset IMDB-WIKI,and the obtained pre-trained weights are loaded onto the Radiological Society of North America(RSNA)dataset.Finally,label distribution learning(LDL)and expectation regression techniques are introduced into our model to exploit the correlation between hand bone images of different ages,which can obtain stable age estimates.Extensive experiments confirm that our model can converge more efficiently and obtain a mean absolute error(MAE)of 4.64 months,outperforming some state-of-the-art BAA methods.
基金supported in part by Natural Science Foundation of China(Grant No.62121001,62171344,61931005)in part by Young Elite Scientists Sponsorship Program by CAST+2 种基金in part by Key Industry Innovation Chain of Shaanxi(Grant No.2022ZDLGY0501,2022ZDLGY05-06)in part by Key Research and Development Program of Shannxi(Grant No.2021KWZ-05)in part by The Major Key Project of PCL(PCL2021A15)。
文摘In this paper,we reveal the fundamental limitation of network densification on the performance of caching enabled small cell network(CSCN)under two typical user association rules,namely,contentand distance-based rules.It indicates that immoderately caching content would significantly change the interference distribution in CSCN,which may degrade the network area spectral efficiency(ASE).Meanwhile,it is shown that content-based rule outperforms the distance-based rule in terms of network ASE only when small cell base stations(BSs)are sparsely deployed with low decoding thresholds.Moreover,it is proved that network ASE under distance-based user association serves as the upper bound of that under content-based rule in dense BS regime.To enable more spectrum-efficient user association in dense CSCN,we further optimize network ASE by designing a probabilistic content retrieving strategy based on distance-based rule.With the optimized retrieving probability,network ASE could be substantially enhanced and even increase with the growing BS density in dense BS regime.
基金The National Natural Science Foundation of China(No.61471164)the Fundamental Research Funds for the Central Universitiesthe Scientific Innovation Research of College Graduates in Jiangsu Province(No.KYLX-0133)
文摘For the dense macro-femto coexistence networks scenario, a long-term-based handover(LTBH) algorithm is proposed. The handover decision algorithm is jointly determined by the angle of handover(AHO) and the time-tostay(TTS) to reduce the unnecessary handover numbers.First, the proposed AHO parameter is used to decrease the computation complexity in multiple candidate base stations(CBSs) scenario. Then, two types of TTS parameters are given for the fixed base stations and mobile base stations to make handover decisions among multiple CBSs. The simulation results show that the proposed LTBH algorithm can not only maintain the required transmission rate of users, but also effectively reduce the unnecessary numbers of handover in the dense macro-femto networks with the coexisting mobile BSs.
基金supported by the Ministry of Higher Education,Malaysia under Scholarship of Hadiah Latihan Persekutuan under Grant No.KPT.B.600-19/3-791206065445
文摘The high-density population leads to crowded cities. The future city is envisaged to encompass a large-scale network with diverse applications and a massive number of interconnected heterogeneous wireless-enabled devices. Hence, green technology elements are crucial to design sustainable and future-proof network architectures. They are the solutions for spectrum scarcity, high latency, interference, energy efficiency, and scalability that occur in dense and heterogeneous wireless networks especially in the home area network (HAN). Radio-over-fiber (ROF) is a technology candidate to provide a global view of HAN's activities that can be leveraged to allocate orthogonal channel communications for enabling wireless-enabled HAN devices transmission, with considering the clustered-frequency-reuse approach. Our proposed network architecture design is mainly focused on enhancing the network throughput and reducing the average network communications latency by proposing a data aggregation unit (DAU). The performance shows that with the DAU, the average network communications latency reduces significantly while the network throughput is enhanced, compared with the existing ROF architecture without the DAU.
文摘Early diagnosis and detection are important tasks in controlling the spread of COVID-19.A number of Deep Learning techniques has been established by researchers to detect the presence of COVID-19 using CT scan images and X-rays.However,these methods suffer from biased results and inaccurate detection of the disease.So,the current research article developed Oppositional-based Chimp Optimization Algorithm and Deep Dense Convolutional Neural Network(OCOA-DDCNN)for COVID-19 prediction using CT images in IoT environment.The proposed methodology works on the basis of two stages such as pre-processing and prediction.Initially,CT scan images generated from prospective COVID-19 are collected from open-source system using IoT devices.The collected images are then preprocessed using Gaussian filter.Gaussian filter can be utilized in the removal of unwanted noise from the collected CT scan images.Afterwards,the preprocessed images are sent to prediction phase.In this phase,Deep Dense Convolutional Neural Network(DDCNN)is applied upon the pre-processed images.The proposed classifier is optimally designed with the consideration of Oppositional-basedChimp Optimization Algorithm(OCOA).This algorithm is utilized in the selection of optimal parameters for the proposed classifier.Finally,the proposed technique is used in the prediction of COVID-19 and classify the results as either COVID-19 or non-COVID-19.The projected method was implemented in MATLAB and the performances were evaluated through statistical measurements.The proposed method was contrasted with conventional techniques such as Convolutional Neural Network-Firefly Algorithm(CNN-FA),Emperor Penguin Optimization(CNN-EPO)respectively.The results established the supremacy of the proposed model.
文摘Notwithstanding the discovery of vaccines for Covid-19, the virus'srapid spread continues due to the limited availability of vaccines, especially inpoor and emerging countries. Therefore, the key issues in the presentCOVID-19 pandemic are the early identification of COVID-19, the cautiousseparation of infected cases at the lowest cost and curing the disease in the earlystages. For that reason, the methodology adopted for this study is imaging tools,particularly computed tomography, which have been critical in diagnosing andtreating the disease. A new method for detecting Covid-19 in X-rays and CTimages has been presented based on the Scatter Wavelet Transform and DenseDeep Neural Network. The Scatter Wavelet Transform has been employed as afeature extractor, while the Dense Deep Neural Network is utilized as a binaryclassifier. An extensive experiment was carried out to evaluate the accuracy ofthe proposed method over three datasets: IEEE 80200, Kaggle, andCovid-19 X-ray image data Sets. The dataset used in the experimental part consists of 14142. The numbers of training and testing images are 8290 and 2810,respectively. The analysis of the result refers that the proposed methods achievedhigh accuracy of 98%. The proposed model results show an excellent outcomecompared to other methods in the same domain, such as (DeTraC) CNN, whichachieved only 93.1%, CNN, which achieved 94%, and stacked Multi-ResolutionCovXNet, which achieved 97.4%. The accuracy of CapsNet reached 97.24%.
基金National Natural Science Foundation of China,Grant/Award Number:62071039Beijing Natural Science Foundation,Grant/Award Number:L223033。
文摘The end-to-end separation algorithm with superior performance in the field of speech separation has not been effectively used in music separation.Moreover,since music signals are often dual channel data with a high sampling rate,how to model longsequence data and make rational use of the relevant information between channels is also an urgent problem to be solved.In order to solve the above problems,the performance of the end-to-end music separation algorithm is enhanced by improving the network structure.Our main contributions include the following:(1)A more reasonable densely connected U-Net is designed to capture the long-term characteristics of music,such as main melody,tone and so on.(2)On this basis,the multi-head attention and dualpath transformer are introduced in the separation module.Channel attention units are applied recursively on the feature map of each layer of the network,enabling the network to perform long-sequence separation.Experimental results show that after the introduction of the channel attention,the performance of the proposed algorithm has a stable improvement compared with the baseline system.On the MUSDB18 dataset,the average score of the separated audio exceeds that of the current best-performing music separation algorithm based on the time-frequency domain(T-F domain).
基金funded by National Natural Science Foundation of China(under Grant No.61905201)。
文摘The field of finance heavily relies on cybersecurity to safeguard its systems and clients from harmful software.The identification of malevolent code within financial software is vital for protecting both the financial system and individual clients.Nevertheless,present detection models encounter limitations in their ability to identify malevolent code and its variations,all while encompassing a multitude of parameters.To overcome these obsta-cles,we introduce a lean model for classifying families of malevolent code,formulated on Ghost-DenseNet-SE.This model integrates the Ghost module,DenseNet,and the squeeze-and-excitation(SE)channel domain attention mechanism.It substitutes the standard convolutional layer in DenseNet with the Ghost module,thereby diminishing the model’s size and augmenting recognition speed.Additionally,the channel domain attention mechanism assigns distinctive weights to feature channels,facilitating the extraction of pivotal characteristics of malevolent code and bolstering detection precision.Experimental outcomes on the Malimg dataset indicate that the model attained an accuracy of 99.14%in discerning families of malevolent code,surpassing AlexNet(97.8%)and The visual geometry group network(VGGNet)(96.16%).The proposed model exhibits reduced parameters,leading to decreased model complexity alongside enhanced classification accuracy,rendering it a valuable asset for categorizing malevolent code.
基金supported by the School Doctoral Fund of Zhengzhou University of Light Industry No.2015BSJJ051.
文摘Automatic road damage detection using image processing is an important aspect of road maintenance.It is also a challenging problem due to the inhomogeneity of road damage and complicated background in the road images.In recent years,deep convolutional neural network based methods have been used to address the challenges of road damage detection and classification.In this paper,we propose a new approach to address those challenges.This approach uses densely connected convolution networks as the backbone of the Mask R-CNN to effectively extract image feature,a feature pyramid network for combining multiple scales features,a region proposal network to generate the road damage region,and a fully convolutional neural network to classify the road damage region and refine the region bounding box.This method can not only detect and classify the road damage,but also create a mask of the road damage.Experimental results show that the proposed approach can achieve better results compared with other existing methods.
文摘Technological advancements continue to expand the communications industry’s potential.Images,which are an important component in strengthening communication,are widely available.Therefore,image quality assessment(IQA)is critical in improving content delivered to end users.Convolutional neural networks(CNNs)used in IQA face two common challenges.One issue is that these methods fail to provide the best representation of the image.The other issue is that the models have a large number of parameters,which easily leads to overfitting.To address these issues,the dense convolution network(DSC-Net),a deep learning model with fewer parameters,is proposed for no-reference image quality assessment(NR-IQA).Moreover,it is obvious that the use of multimodal data for deep learning has improved the performance of applications.As a result,multimodal dense convolution network(MDSC-Net)fuses the texture features extracted using the gray-level co-occurrence matrix(GLCM)method and spatial features extracted using DSC-Net and predicts the image quality.The performance of the proposed framework on the benchmark synthetic datasets LIVE,TID2013,and KADID-10k demonstrates that the MDSC-Net approach achieves good performance over state-of-the-art methods for the NR-IQA task.
文摘Intrusion Detection Systems (IDS) are pivotal in safeguarding computer networks from malicious activities. This study presents a novel approach by proposing a Hybrid Dense Neural Network-Radial Basis Function Neural Network (DNN-RBFNN) architecture to enhance the accuracy and efficiency of IDS. The hybrid model synergizes the strengths of both dense learning and radial basis function networks, aiming to address the limitations of traditional IDS techniques in classifying packets that could result in Remote-to-local (R2L), Denial of Service (Dos), and User-to-root (U2R) intrusions.
基金supported by the National Natural Science Foundation of China(62101415)the Guangdong Basic and Applied Basic Research Foundation(2020A1515110757).
文摘Recently cellular networks have been densely and heterogeneously deployed indoors and outdoors to expand the network capacity,and thus the in-building propagation loss and the transmit power diversity of access points will exacerbate link heterogeneity and result in partial unidirectional strong interference.To make full use of the strong interference feature,we propose the successive interference cancellation and alignment(SICA)scheme in the K-user interference channel with partial unidirectional strong interference.SICA is designed to transmit two kinds of data streams simultaneously,the alignment streams and superposition streams.The alignment streams will follow the interference alignment criterion to maintain the optimal degrees of freedom(DoF)performance;the superposition streams are handled via successive interference cancellation at all the strongly interfered receivers to improve the overall achievable rate.The joint transceiver designs for SICA is modeled as a weighted sum rate(WSR)maximization problem,and then can be alternately solved for a local optimum according to the optimality equivalence between WSR and its corresponding weighted mean square error(WMMSE)problem.Simulation results have confirmed the sum rate improvement and DoF optimality of the proposed SICA scheme.
文摘BACKGROUND The nature of input data is an essential factor when training neural networks.Research concerning magnetic resonance imaging(MRI)-based diagnosis of liver tumors using deep learning has been rapidly advancing.Still,evidence to support the utilization of multi-dimensional and multi-parametric image data is lacking.Due to higher information content,three-dimensional input should presumably result in higher classification precision.Also,the differentiation between focal liver lesions(FLLs)can only be plausible with simultaneous analysis of multisequence MRI images.AIM To compare diagnostic efficiency of two-dimensional(2D)and three-dimensional(3D)-densely connected convolutional neural networks(DenseNet)for FLLs on multi-sequence MRI.METHODS We retrospectively collected T2-weighted,gadoxetate disodium-enhanced arterial phase,portal venous phase,and hepatobiliary phase MRI scans from patients with focal nodular hyperplasia(FNH),hepatocellular carcinomas(HCC)or liver metastases(MET).Our search identified 71 FNH,69 HCC and 76 MET.After volume registration,the same three most representative axial slices from all sequences were combined into four-channel images to train the 2D-DenseNet264 network.Identical bounding boxes were selected on all scans and stacked into 4D volumes to train the 3D-DenseNet264 model.The test set consisted of 10-10-10 tumors.The performance of the models was compared using area under the receiver operating characteristic curve(AUROC),specificity,sensitivity,positive predictive values(PPV),negative predictive values(NPV),and f1 scores.RESULTS The average AUC value of the 2D model(0.98)was slightly higher than that of the 3D model(0.94).Mean PPV,sensitivity,NPV,specificity and f1 scores(0.94,0.93,0.97,0.97,and 0.93)of the 2D model were also superior to metrics of the 3D model(0.84,0.83,0.92,0.92,and 0.83).The classification metrics of FNH were 0.91,1.00,1.00,0.95,and 0.95 using the 2D and 0.90,0.90,0.95,0.95,and 0.90 using the 3D models.The 2D and 3D networks'performance in the diagnosis of HCC were 1.00,0.80,0.91,1.00,and 0.89 and 0.88,0.70,0.86,0.95,and 0.78,respectively;while the evaluation of MET lesions resulted in 0.91,1.00,1.00,0.95,and 0.95 and 0.75,0.90,0.94,0.85,and 0.82 using the 2D and 3D networks,respectively.CONCLUSION Both 2D and 3D-DenseNets can differentiate FNH,HCC and MET with good accuracy when trained on hepatocyte-specific contrast-enhanced multi-sequence MRI volumes.
文摘Due to effectiveness of network layer on general performance of networks, designing routing protocols is very important for lifetime and traffic efficiency in wireless sensor networks. So in this paper, we are going to represent an efficient and scalable version of depth-based routing (DBR) protocol that is limited by depth divisions-policy. In fact the new version is a network information independent routing protocol for acoustic communications. Proposed method by use of depth clustering is able to reduce consumed energy and end-to-end delay in dense underwater sensor networks (DUSNs) and this issue is proved by simulation.