Interference control can be realized by selecting the antenna' s electrical and engineering parameters such as gain and radiation pattern, height, azimuth and downtilt to directly influence the field intensity dis...Interference control can be realized by selecting the antenna' s electrical and engineering parameters such as gain and radiation pattern, height, azimuth and downtilt to directly influence the field intensity distribution of radio signals and effectively and reasonably distribute the electro-magnetic energy. This paper discusses how to select an antenna for a densely populated urban area. The discussion is based on the simulation platform of ZTE ' s WCDMA planning system.展开更多
Daylight is one of the essential criteria for decent housing.However,in an urban kampung,access to daylight is limited due to the high-density population in urban Kampung Kota.This study aims to improve the visual and...Daylight is one of the essential criteria for decent housing.However,in an urban kampung,access to daylight is limited due to the high-density population in urban Kampung Kota.This study aims to improve the visual and thermal conditions by modifying the aperture of the light pipe based on visual daylight distribution,illuminance level,and thermal conditions in multi-storey houses in hot-humid climates.Light pipe was developed experi-mentally through the simulation model to investigate the performance and impact on the visual and thermal conditions like operational temperature and RH in densely populated Kampung Kota without vertical apertures.According to the results,the two-aperture light pipe residential space enhanced the current situation but did not fulfill the standards.The two aperture light pipe visually improved daylight distribution by 1.05%-31.36%and illumination level by 8.4%-14.8%.We also found that light pipe also impacts thermal conditions with a 10.92%RH reduction while at the same time increasing temperature up to 10.57%.Therefore,it can be concluded that a two-aperture light pipe has the potential to be applied to actual conditions in hot-humid climates.展开更多
文摘Interference control can be realized by selecting the antenna' s electrical and engineering parameters such as gain and radiation pattern, height, azimuth and downtilt to directly influence the field intensity distribution of radio signals and effectively and reasonably distribute the electro-magnetic energy. This paper discusses how to select an antenna for a densely populated urban area. The discussion is based on the simulation platform of ZTE ' s WCDMA planning system.
基金funded by the Directorate of Research and De-velopment,Universitas Indonesia under Hibah PUTI 2022 (grant no.NKB-332/UN2.RST/HKP.05.00/2022).
文摘Daylight is one of the essential criteria for decent housing.However,in an urban kampung,access to daylight is limited due to the high-density population in urban Kampung Kota.This study aims to improve the visual and thermal conditions by modifying the aperture of the light pipe based on visual daylight distribution,illuminance level,and thermal conditions in multi-storey houses in hot-humid climates.Light pipe was developed experi-mentally through the simulation model to investigate the performance and impact on the visual and thermal conditions like operational temperature and RH in densely populated Kampung Kota without vertical apertures.According to the results,the two-aperture light pipe residential space enhanced the current situation but did not fulfill the standards.The two aperture light pipe visually improved daylight distribution by 1.05%-31.36%and illumination level by 8.4%-14.8%.We also found that light pipe also impacts thermal conditions with a 10.92%RH reduction while at the same time increasing temperature up to 10.57%.Therefore,it can be concluded that a two-aperture light pipe has the potential to be applied to actual conditions in hot-humid climates.