This work is to study a role of the fluctuating density gradient in the compressible flows tbr the computational fluid dynamics (CFD). A new anisotropy tensor with the fluctuating density gradient is introduced, and...This work is to study a role of the fluctuating density gradient in the compressible flows tbr the computational fluid dynamics (CFD). A new anisotropy tensor with the fluctuating density gradient is introduced, and is used for an invariant modeling technique to model the turbulent density gradient correlation equation derived from the continuity equation. The modeling equation is decomposed into three groups proportional to the mean velocity, proportional to the mean strain rate, and proportional to the mean density. The characteristics of the correlation in a wake are extracted from the results by the two dimensional direct simulation, and shows the strong correlation with the vortices in the wake near the body. Thus, it can be concluded that the correlation of the density gradient is a significant parameter to describe the quick generation of the turbulent property in the compressible flows.展开更多
We investigate the topological phase transition driven by non-local electronic correlations in a realistic quantum anomalous Hall model consisting of d_(xy)–d_(x^(2)-y^(2)) orbitals. Three topologically distinct phas...We investigate the topological phase transition driven by non-local electronic correlations in a realistic quantum anomalous Hall model consisting of d_(xy)–d_(x^(2)-y^(2)) orbitals. Three topologically distinct phases defined in the noninteracting limit evolve to different charge density wave phases under correlations. Two conspicuous conclusions were obtained: The topological phase transition does not involve gap-closing and the dynamical fluctuations significantly suppress the charge order favored by the next nearest neighbor interaction. Our study sheds light on the stability of topological phase under electronic correlations, and we demonstrate a positive role played by dynamical fluctuations that is distinct to all previous studies on correlated topological states.展开更多
In dielectrics and semiconductors, a plasma model of the generation and slip of dislocations is considered, where under shock loads in a generalized space of rectangular pulses an alternating field forms a distributio...In dielectrics and semiconductors, a plasma model of the generation and slip of dislocations is considered, where under shock loads in a generalized space of rectangular pulses an alternating field forms a distribution of pairs of photoelectrons and cations;these electrons with velocities <em>V<sub>e</sub></em> create <em>δ</em>-collisions with cold plasma from free electrons and holes with masses <em>m<sub>e</sub></em> and <em>m<sub>h</sub></em> (<em>m<sub>h</sub></em> <span style="white-space:normal;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">≫</span></span> </span></span><em>m<sub>e</sub></em>), they emit and absorb longitudinal electron plasma waves whose phase velocities <em>w<sub>pw</sub></em> / <em>k<sub>pw</sub></em> are close to or are equal to the velocities <em>V<sub>e</sub></em>, while the frequencies <em>w<sub>pw</sub></em> and wave numbers <em>k<sub>pw</sub></em> of the wave packet of plasma waves are complex, the short-wave components <img src="Edit_3da65014-7fd8-4799-bcf1-02d90028f4e0.bmp" alt="" /> of this wave packet at <em>k<sub>pw</sub></em> <span style="white-space:normal;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span> </span><em>a<sub>e </sub></em><span style="white-space:nowrap;">≫ </span>1 (<em>a<sub>e</sub></em> -Debye screening radius) decay in the core linear defect, and its long-wavelength components <img src="Edit_4481889b-5097-4d26-9019-b0322f5ff8d0.bmp" alt="" /> propagate in the region of the medium surrounding the core of the defect at <em>k<sub>pw</sub></em> <span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span> <em>a<sub>e</sub></em> <span style="white-space:nowrap;"><<span style="white-space:nowrap;"><span style="white-space:nowrap;">≅</span></span></span> 1. When a defect is generated, the distribution of cations under the influence of the internal Coulomb field shifts to the region of the first peak (protrusion) of the electron plasma wave, thereby forming a vacancy valley. When sliding under the influence of an external electric field, a cationic plasma wave consisting of a vacancy valley and two cationic protrusions moves against the background of an additional potential relief created by an electron plasma wave near the core of the defect. It has been shown that <em>δ</em>-collisions create flows of dynamic large-scale correlations of plasma fluctuations in the form of asymptotics of different-time correlators of density and potential fluctuations as <em>t</em> → +∞.展开更多
The research is about the effect of a layer of varying density of sea-bottom sediments on spatial correlation of sea-bottom backscattering. The relationship between scattering cross section and spatial correlation is ...The research is about the effect of a layer of varying density of sea-bottom sediments on spatial correlation of sea-bottom backscattering. The relationship between scattering cross section and spatial correlation is that backscattering cross section decreases quickly and the spatial correlation becomes stronger as the incident angle increases. Therefore, the density- depth profile is introduced into sea-bottom high-frequency backscattering echo model, which is used to simulate sea-bottom backscattering and calculate the function of spatial correlation. The influence of the density gradient on spatial correlation of sea-bottom backscattering is investigated by analyzing the relations between vertical gradient of density and the scattering cross section. As can be seen from the simulation results, the impact of the density gradient on the spatial correlation is found more significant. While the density gradient increases, the scattering cross-section and the radius of the spatial correlation broaden, the spatial correlation becomes stronger. At the same time, the scattering cross-section decreases more quickly as the incident angle increases.展开更多
The present paper deals with the induced orientational order of the probe molecules dissolved in the uniaxially strained rubbers measured by using deuterium NMR. The distinctive dependence of the quadrupolar splitting...The present paper deals with the induced orientational order of the probe molecules dissolved in the uniaxially strained rubbers measured by using deuterium NMR. The distinctive dependence of the quadrupolar splitting on the swelling, elongation and crosslinking density was observed. The orientational order arising from the correlation between chain segments decreases with the increase of the numbers of both links between junctions and solvent molecules around segments.展开更多
Cerebral palsy(CP) is a group of permanent movement disorders that appear in early childhood.The electromyography(EMG) signal analysis and the gait analysis are two most commonly used methods in the clinic. In this pa...Cerebral palsy(CP) is a group of permanent movement disorders that appear in early childhood.The electromyography(EMG) signal analysis and the gait analysis are two most commonly used methods in the clinic. In this paper, a cyclostationary model of the EMG signal is proposed. The model can combine the aforementioned two methods. The EMG signal acquired during the gait cycles is assumed to be cyclostationary due to the physiological characteristics of the EMG signal production. Then, the spectral correlation density is used to analyze the cyclic frequency(corresponding to the gait cycles) and spectral frequency(the frequency of EMG signal) in a waterfall representation of the two kinds of frequencies. The experiments show that the asymptomatic(normal) subjects and symptomatic subjects(with CP) can be distinguished from the spectral correlation density in a range of cyclic frequencies.展开更多
文摘This work is to study a role of the fluctuating density gradient in the compressible flows tbr the computational fluid dynamics (CFD). A new anisotropy tensor with the fluctuating density gradient is introduced, and is used for an invariant modeling technique to model the turbulent density gradient correlation equation derived from the continuity equation. The modeling equation is decomposed into three groups proportional to the mean velocity, proportional to the mean strain rate, and proportional to the mean density. The characteristics of the correlation in a wake are extracted from the results by the two dimensional direct simulation, and shows the strong correlation with the vortices in the wake near the body. Thus, it can be concluded that the correlation of the density gradient is a significant parameter to describe the quick generation of the turbulent property in the compressible flows.
基金supported by the National Natural Science Foundation of China (Grant No. 11874263)the National Key R&D Program of China (Grant No. 2017YFE0131300)Shanghai Technology Innovation Action Plan (2020-Integrated Circuit Technology Support Program 20DZ1100605,2021-Fundamental Research Area 21JC1404700)。
文摘We investigate the topological phase transition driven by non-local electronic correlations in a realistic quantum anomalous Hall model consisting of d_(xy)–d_(x^(2)-y^(2)) orbitals. Three topologically distinct phases defined in the noninteracting limit evolve to different charge density wave phases under correlations. Two conspicuous conclusions were obtained: The topological phase transition does not involve gap-closing and the dynamical fluctuations significantly suppress the charge order favored by the next nearest neighbor interaction. Our study sheds light on the stability of topological phase under electronic correlations, and we demonstrate a positive role played by dynamical fluctuations that is distinct to all previous studies on correlated topological states.
文摘In dielectrics and semiconductors, a plasma model of the generation and slip of dislocations is considered, where under shock loads in a generalized space of rectangular pulses an alternating field forms a distribution of pairs of photoelectrons and cations;these electrons with velocities <em>V<sub>e</sub></em> create <em>δ</em>-collisions with cold plasma from free electrons and holes with masses <em>m<sub>e</sub></em> and <em>m<sub>h</sub></em> (<em>m<sub>h</sub></em> <span style="white-space:normal;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">≫</span></span> </span></span><em>m<sub>e</sub></em>), they emit and absorb longitudinal electron plasma waves whose phase velocities <em>w<sub>pw</sub></em> / <em>k<sub>pw</sub></em> are close to or are equal to the velocities <em>V<sub>e</sub></em>, while the frequencies <em>w<sub>pw</sub></em> and wave numbers <em>k<sub>pw</sub></em> of the wave packet of plasma waves are complex, the short-wave components <img src="Edit_3da65014-7fd8-4799-bcf1-02d90028f4e0.bmp" alt="" /> of this wave packet at <em>k<sub>pw</sub></em> <span style="white-space:normal;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span> </span><em>a<sub>e </sub></em><span style="white-space:nowrap;">≫ </span>1 (<em>a<sub>e</sub></em> -Debye screening radius) decay in the core linear defect, and its long-wavelength components <img src="Edit_4481889b-5097-4d26-9019-b0322f5ff8d0.bmp" alt="" /> propagate in the region of the medium surrounding the core of the defect at <em>k<sub>pw</sub></em> <span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span> <em>a<sub>e</sub></em> <span style="white-space:nowrap;"><<span style="white-space:nowrap;"><span style="white-space:nowrap;">≅</span></span></span> 1. When a defect is generated, the distribution of cations under the influence of the internal Coulomb field shifts to the region of the first peak (protrusion) of the electron plasma wave, thereby forming a vacancy valley. When sliding under the influence of an external electric field, a cationic plasma wave consisting of a vacancy valley and two cationic protrusions moves against the background of an additional potential relief created by an electron plasma wave near the core of the defect. It has been shown that <em>δ</em>-collisions create flows of dynamic large-scale correlations of plasma fluctuations in the form of asymptotics of different-time correlators of density and potential fluctuations as <em>t</em> → +∞.
文摘The research is about the effect of a layer of varying density of sea-bottom sediments on spatial correlation of sea-bottom backscattering. The relationship between scattering cross section and spatial correlation is that backscattering cross section decreases quickly and the spatial correlation becomes stronger as the incident angle increases. Therefore, the density- depth profile is introduced into sea-bottom high-frequency backscattering echo model, which is used to simulate sea-bottom backscattering and calculate the function of spatial correlation. The influence of the density gradient on spatial correlation of sea-bottom backscattering is investigated by analyzing the relations between vertical gradient of density and the scattering cross section. As can be seen from the simulation results, the impact of the density gradient on the spatial correlation is found more significant. While the density gradient increases, the scattering cross-section and the radius of the spatial correlation broaden, the spatial correlation becomes stronger. At the same time, the scattering cross-section decreases more quickly as the incident angle increases.
基金Supported by the National Natural Science Foundation of China
文摘The present paper deals with the induced orientational order of the probe molecules dissolved in the uniaxially strained rubbers measured by using deuterium NMR. The distinctive dependence of the quadrupolar splitting on the swelling, elongation and crosslinking density was observed. The orientational order arising from the correlation between chain segments decreases with the increase of the numbers of both links between junctions and solvent molecules around segments.
基金the Shanghai Jiao Tong University "Medical and Industrial Cross Fund" Project(No.YG2015QN28)the National Natural Science Foundation of China(No.11704248)
文摘Cerebral palsy(CP) is a group of permanent movement disorders that appear in early childhood.The electromyography(EMG) signal analysis and the gait analysis are two most commonly used methods in the clinic. In this paper, a cyclostationary model of the EMG signal is proposed. The model can combine the aforementioned two methods. The EMG signal acquired during the gait cycles is assumed to be cyclostationary due to the physiological characteristics of the EMG signal production. Then, the spectral correlation density is used to analyze the cyclic frequency(corresponding to the gait cycles) and spectral frequency(the frequency of EMG signal) in a waterfall representation of the two kinds of frequencies. The experiments show that the asymptomatic(normal) subjects and symptomatic subjects(with CP) can be distinguished from the spectral correlation density in a range of cyclic frequencies.