期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于不均匀数据的密度偏差抽样改进算法 被引量:2
1
作者 吕丹 龙华 +2 位作者 高杰 邵玉斌 杜庆治 《软件导刊》 2018年第2期77-79,85,共4页
针对不均匀数据集的抽样问题,已有随机抽样算法、基于固定网格划分的单维度算法、基于可变网格划分的单维度算法,但仍无法更好地反映数据分布特征问题。在数据挖掘的实际应用中,数据规模越来越大,数据类型也越来越复杂,存在系统整体开... 针对不均匀数据集的抽样问题,已有随机抽样算法、基于固定网格划分的单维度算法、基于可变网格划分的单维度算法,但仍无法更好地反映数据分布特征问题。在数据挖掘的实际应用中,数据规模越来越大,数据类型也越来越复杂,存在系统整体开销大、时间运行成本高等问题。提出并实现了基于不均匀数据的密度偏差抽样改进算法(IDDS),通过引入网格单元密度和三角函数,从而达到较好的密度偏差抽样效果。实验结果发现,IDDS算法抽样效果更好,提取的样本质量更高,有效保证了不均匀数据的分布特征。与原始的密度偏差抽样算法(DDS)相比,应用IDDS算法的效率更高。 展开更多
关键词 密度偏差抽样算法(dds) POI信息 数据挖掘 三角函数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部