The reaction mechanism of o-aminophenol, acetic acid and phosphorus oxytrichloride in one-pot to form 2-methyl benzoxazole was studied by density functional theory. The geometries of the reactants, transition states, ...The reaction mechanism of o-aminophenol, acetic acid and phosphorus oxytrichloride in one-pot to form 2-methyl benzoxazole was studied by density functional theory. The geometries of the reactants, transition states, intermediates and products were optimized at the GGA/PW91/DNP level. Vibration analysis was carried out to confirm the transition state structure. Two possible reaction pathways were investigated in this study. The result indicates that the reaction Re→TS1→IM1→TSA2→IMA2→TSA3→IMA3→TSA4→IMA4→TSA5→P2 is the main pathway, the activation energy of which is the lowest. Re→TS1→IM1 is the rate-limiting step, with the activation energy being 221.54 kJ·mol^(-1) and the reaction heat being 10.06 kJ·mol^(-1). The dominant product predicted theoretically is in agreement with the experiment results.展开更多
In the semiconductor-based photocatalysts for overall water splitting, loading proper cocatalysts play a crucial role in enhancing the photocatalytic activity. In this work, we have chosen Ni_n/α-Ga_2O_3 as a model a...In the semiconductor-based photocatalysts for overall water splitting, loading proper cocatalysts play a crucial role in enhancing the photocatalytic activity. In this work, we have chosen Ni_n/α-Ga_2O_3 as a model and provided detailed density functional theory calculations to investigate the function of cocatalysts in hydrogen evolution reaction(HER). We have studied the formation and stability of Ni_n(n = 1–4) cluster on two stable surfaces of α-Ga_2O_3(001) and(012). In a Ni_n/α-Ga_2O_3 system, as the Ni 3d states well overlap with O and Ga states, the excited electrons transferred from Ga to Ni may participate in HER. We theoretically predict that introduction of Nincluster on(012) surface can elevate the Fermi level toward the conduction band, which is favorable for the occurrence of HER. Electrochemical computations are used to explore the mechanism of HER. It is found that, in most of Ni_n/α-Ga_2O_3 systems, the active sites of HER are on Ni_n clusters. Loading Ni_n clusters not only importantly reduces the Gibbs free energy of HER but also improves the reaction activity of surface O and Ga sites in HER. Our calculations reasonably explain the experimental observation on significant enhancement of activity for generating hydrogen after loading nickel oxide cocatalysts.展开更多
Sn-based electrocatalysts have been gaining increasing attention due to their potential contribution in the conversion of CO2 into HCOOH driven by sustainable energy sources;however,their actual capability to catalyze...Sn-based electrocatalysts have been gaining increasing attention due to their potential contribution in the conversion of CO2 into HCOOH driven by sustainable energy sources;however,their actual capability to catalyze CO2 reduction reaction(CO2RR)still cannot meet the requirements of commercial-scale applications.Therefore developing Snbased catalyst is of vital importance.Herein,the sheet-like heterophase Sn O2/Sn3O4 with a high density of phase interfaces has been first engineered by a facile hydrothermal process,with Sn3O4 as the dominant phase.The evidences from experiments and theoretical simulation indicate that the charge redistribution and built-in electric field at heterophase interfaces boost CO2 adsorption and HCOO*formation,accelerate the charge transfer between the catalysts and reactants,and ultimately greatly elevate the intrinsic activity of the heterophase Sn O2/Sn3O4 towards CO2 RR.Meanwhile,the in-situ generated porous structure and metal Sn during CO2 RR improve the mass transmission within the interlayer volume and the conductivity of Sn O2/Sn3O4.The heterophase Sn O2/Sn3O4 displays high activity and selectivity for CO2 RR,achieving an improvement in CO2 reduction current density,88.3%Faradaic efficiency of HCOOH conversion at-0.9 VRHE,along with a long-term tolerance in CO2 RR.This study demonstrates that heterophase interface engineering is an efficient strategy to regulate advanced catalysts for different applications.展开更多
The role of bismuth in the selective oxidation of propene has long been debated. We performed density functional calculations to study the dehydrogenation reaction of propene on Bi203 surfaces. Our calculated thermody...The role of bismuth in the selective oxidation of propene has long been debated. We performed density functional calculations to study the dehydrogenation reaction of propene on Bi203 surfaces. Our calculated thermodynamic data reveal that the first dehydrogenation of propene on the most stable (010) surface and the (100) surface are difficult. Our calculations indicate that the barrier of the first hydrogen abstraction on the high Miller index surface (211) is much lower than those on the (100) and (010) surfaces, and is close to the experimental one. Further dehydrogenation is shown to be difficult and production of 1,5-hexadiene through dimerization of allyl is likely, in agreement with the experimental observations.展开更多
基金Supported by the Scientific and Technological Research Program of Chongqing Municipal Education Commission(KJ1601215)the Ministry of Education "Chunhui Plan"(Z2016177)
文摘The reaction mechanism of o-aminophenol, acetic acid and phosphorus oxytrichloride in one-pot to form 2-methyl benzoxazole was studied by density functional theory. The geometries of the reactants, transition states, intermediates and products were optimized at the GGA/PW91/DNP level. Vibration analysis was carried out to confirm the transition state structure. Two possible reaction pathways were investigated in this study. The result indicates that the reaction Re→TS1→IM1→TSA2→IMA2→TSA3→IMA3→TSA4→IMA4→TSA5→P2 is the main pathway, the activation energy of which is the lowest. Re→TS1→IM1 is the rate-limiting step, with the activation energy being 221.54 kJ·mol^(-1) and the reaction heat being 10.06 kJ·mol^(-1). The dominant product predicted theoretically is in agreement with the experiment results.
基金financially supported by the National Natural Science Foundation of China under Grants 21473183 and 21303079
文摘In the semiconductor-based photocatalysts for overall water splitting, loading proper cocatalysts play a crucial role in enhancing the photocatalytic activity. In this work, we have chosen Ni_n/α-Ga_2O_3 as a model and provided detailed density functional theory calculations to investigate the function of cocatalysts in hydrogen evolution reaction(HER). We have studied the formation and stability of Ni_n(n = 1–4) cluster on two stable surfaces of α-Ga_2O_3(001) and(012). In a Ni_n/α-Ga_2O_3 system, as the Ni 3d states well overlap with O and Ga states, the excited electrons transferred from Ga to Ni may participate in HER. We theoretically predict that introduction of Nincluster on(012) surface can elevate the Fermi level toward the conduction band, which is favorable for the occurrence of HER. Electrochemical computations are used to explore the mechanism of HER. It is found that, in most of Ni_n/α-Ga_2O_3 systems, the active sites of HER are on Ni_n clusters. Loading Ni_n clusters not only importantly reduces the Gibbs free energy of HER but also improves the reaction activity of surface O and Ga sites in HER. Our calculations reasonably explain the experimental observation on significant enhancement of activity for generating hydrogen after loading nickel oxide cocatalysts.
基金the National Natural Science Foundation of China(21573062,21631004 and 21901065)the Natural Science Foundation of Heilongjiang Province(B2018008)+1 种基金the Youth Science and Technology Innovation Team Project of Heilongjiang Province(2018-KYYWF-1593)the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(UNPYSCT-2018009)。
文摘Sn-based electrocatalysts have been gaining increasing attention due to their potential contribution in the conversion of CO2 into HCOOH driven by sustainable energy sources;however,their actual capability to catalyze CO2 reduction reaction(CO2RR)still cannot meet the requirements of commercial-scale applications.Therefore developing Snbased catalyst is of vital importance.Herein,the sheet-like heterophase Sn O2/Sn3O4 with a high density of phase interfaces has been first engineered by a facile hydrothermal process,with Sn3O4 as the dominant phase.The evidences from experiments and theoretical simulation indicate that the charge redistribution and built-in electric field at heterophase interfaces boost CO2 adsorption and HCOO*formation,accelerate the charge transfer between the catalysts and reactants,and ultimately greatly elevate the intrinsic activity of the heterophase Sn O2/Sn3O4 towards CO2 RR.Meanwhile,the in-situ generated porous structure and metal Sn during CO2 RR improve the mass transmission within the interlayer volume and the conductivity of Sn O2/Sn3O4.The heterophase Sn O2/Sn3O4 displays high activity and selectivity for CO2 RR,achieving an improvement in CO2 reduction current density,88.3%Faradaic efficiency of HCOOH conversion at-0.9 VRHE,along with a long-term tolerance in CO2 RR.This study demonstrates that heterophase interface engineering is an efficient strategy to regulate advanced catalysts for different applications.
基金supported by the National Basic Research Program of China(2011CB808604)the National Natural Science Foundation of China(21273103)
文摘The role of bismuth in the selective oxidation of propene has long been debated. We performed density functional calculations to study the dehydrogenation reaction of propene on Bi203 surfaces. Our calculated thermodynamic data reveal that the first dehydrogenation of propene on the most stable (010) surface and the (100) surface are difficult. Our calculations indicate that the barrier of the first hydrogen abstraction on the high Miller index surface (211) is much lower than those on the (100) and (010) surfaces, and is close to the experimental one. Further dehydrogenation is shown to be difficult and production of 1,5-hexadiene through dimerization of allyl is likely, in agreement with the experimental observations.