The equilibrium geometries, relative stabilities, and electronic properties of MnAgm(M=Na, Li; n + m ≤ 7) as well as pure Agn, Nan, Lin (n ≤ 7) clusters are systematically investigated by means of the density f...The equilibrium geometries, relative stabilities, and electronic properties of MnAgm(M=Na, Li; n + m ≤ 7) as well as pure Agn, Nan, Lin (n ≤ 7) clusters are systematically investigated by means of the density functional theory. The optimized geometries reveal that for 2 ≤ n ≤ 7, there are significant similarities in geometry among pure Agn, Nan, and Lin clusters, and the transitions from planar to three-dimensional configurations occur at n = 7, 7, and 6, respectively. In contrast, the first three-dimensional (3D) structures are observed at n + m = 5 for both NanAgm and LinAgm clusters. When n + m ≥5, a striking feature is that the trigonal bipyramid becomes the main subunit of LinAgm. Furthermore, dramatic odd-even alternative behaviours are obtained in the fragmentation energies, secondorder difference energies, highest occupied and lowest unoccupied molecular orbital energy gaps, and chemical hardness for both pure and doped clusters. The analytic results exhibit that clusters with an even electronic configuration (2, 4, 6) possess the weakest chemical reactivity and more enhanced stability.展开更多
We study the geometries, stabilities, electronic and magnetic properties of (MgO)n (n=2-10) clusters doped with a single Mn atom using the density functional theory with the gener- alized gradient approximation. T...We study the geometries, stabilities, electronic and magnetic properties of (MgO)n (n=2-10) clusters doped with a single Mn atom using the density functional theory with the gener- alized gradient approximation. The optimized geometries show that the impurity Mn atom prefers to replace the Mg atom which has low coordination number in all the lowest-energy MnMgn-1On (n=2-10) structures. The stability analysis clearly represents that the average binding energies of the doped clusters are larger than those of the corresponding pure (MgO)n clusters. Maximum peaks of the second order energy differences are observed for MnMg~_1On clusters at n=6, 9, implying that these clusters exhibit higher stability than their neighboring clusters. In addition, all the Mn-doped Mg clusters exhibit high total magnetic moments with the exception of MnMgO2 which has 3.00μB. Their magnetic behavior is attributed to the impurity Mn atom, the charge transfer modes, and the size of MnMgn- 1On clusters.展开更多
The equilibrium geometries,relative stabilities,and electronic properties of Mn Agm(M=Na,Li;n + m ≤ 7) as well as pure Ag n,Na n,Li n(n ≤ 7) clusters are systematically investigated by means of the density functiona...The equilibrium geometries,relative stabilities,and electronic properties of Mn Agm(M=Na,Li;n + m ≤ 7) as well as pure Ag n,Na n,Li n(n ≤ 7) clusters are systematically investigated by means of the density functional theory.The optimized geometries reveal that for 2 ≤ n ≤ 7,there are significant similarities in geometry among pure Ag n,Na n,and Li n clusters,and the transitions from planar to three-dimensional configurations occur at n = 7,7,and 6,respectively.In contrast,the first three-dimensional(3D) structures are observed at n + m = 5 for both Na n Ag m and Li n Ag m clusters.When n + m ≥ 5,a striking feature is that the trigonal bipyramid becomes the main subunit of Li n Ag m.Furthermore,dramatic odd-even alternative behaviours are obtained in the fragmentation energies,secondorder difference energies,highest occupied and lowest unoccupied molecular orbital energy gaps,and chemical hardness for both pure and doped clusters.The analytic results exhibit that clusters with an even electronic configuration(2,4,6) possess the weakest chemical reactivity and more enhanced stability.展开更多
The geometries, electronic structures and related properties of SimN8-m(0 〈 m 〈 8) clusters are studied using density functional theory (DFT) with hybrid functional B3LYP. The calculated results reveal several t...The geometries, electronic structures and related properties of SimN8-m(0 〈 m 〈 8) clusters are studied using density functional theory (DFT) with hybrid functional B3LYP. The calculated results reveal several trends. For any stoichiometric clusters, the lowest energy isomers with an alteration of N and Si atoms are favourable in energy if the numbers of Si and N atoms are large enough to form ... Si N-Si-N... alternative chains. The bond lengths of single Si-N bonds are very close to the corresponding values of the bulk and other SiN clusters. The geometries for N-rich and Si4N4 clusters are planar structures, but three-dimensional structures are favourable in energy for Si-rich clusters. With the increase of m, the isotropic polarizability and average polarizability increase, the total binding energies generally decrease, the HOMO-LUMO gap and vertical ionization potential oscillate with increasing number of valence electrons, and their values with even valence electrons are larger than those with odd valence electrons. The atomic charges, IR and Raman properties are also reported.展开更多
The geometries, stabilities, and electronic properties of FSin (n=1~12) clusters are systematically investigated by using first-principles calculations based on the hybrid density-functional theory at the B3LYP/6-3...The geometries, stabilities, and electronic properties of FSin (n=1~12) clusters are systematically investigated by using first-principles calculations based on the hybrid density-functional theory at the B3LYP/6-311G level. The geometries are found to undergo a structural change from two-dimensional to three-dimensional structure when the cluster size n equals 3. On the basis of the obtained lowest-energy geometries, the size dependencies of cluster properties, such as averaged binding energy, fragmentation energy, second-order energy difference, HOMO–LUMO (highest occupied molecular orbital–lowest unoccupied molecular orbital) gap and chemical hardness, are discussed. In addition, natural population analysis indicates that the F atom in the most stable FSin cluster is recorded as being negative and the charges always transfer from Si atoms to the F atom in the FSin clusters.展开更多
The geometries of MgnNi2(n = 1 6) clusters are studied by using the hybrid density functional theory (B3LYP) with LANL2DZ basis sets. For the ground-state structures of MgnNi2 clusters, the stabilities and the ele...The geometries of MgnNi2(n = 1 6) clusters are studied by using the hybrid density functional theory (B3LYP) with LANL2DZ basis sets. For the ground-state structures of MgnNi2 clusters, the stabilities and the electronic properties are investigated. The results show that the groundstate structures and symmetries of Mg clusters change greatly due to the Ni atoms. The average binding energies have a growing tendency while the energy gaps have a declining tendency. In addition, the ionization energies exhibit an odd-even oscillation feature. We also conclude that n = 3, 5 are the magic numbers of the MgnNi2 clusters. The Mg3Ni2 and Mg5Ni2 clusters are more stable than neighbouring clusters, and the MgaNi2 cluster exhibits a higher chemical activity.展开更多
This paper investigates the geometrical structures and relative stabilities of neutral A1Sn (n=2-9) using the density functional theory. Structural optimisation and frequency analysis are performed at the B3LYP/6-3...This paper investigates the geometrical structures and relative stabilities of neutral A1Sn (n=2-9) using the density functional theory. Structural optimisation and frequency analysis are performed at the B3LYP/6-311C(d) level. The ground state structures of the A1Sn show that the sulfur atoms prefer not only to evenly distribute on both sides of the aluminum atom but also to form stable structures in AlSn clusters. The structures of pure Sn are fundamentally changed due to the doping of the Al atom. The fragmentation energies and the second-order energy differences are calculated and discussed. Among neutral AlSn (n = 2-9) clusters, AlS4 and AlS6 are the most stable.展开更多
The possible geometrical and the electronic structures of small MgnNi (n = 1 - 7) clusters are optimised by the density functional theory with a LANL2DZ basis set. The binding energy, the energy gap, the electron af...The possible geometrical and the electronic structures of small MgnNi (n = 1 - 7) clusters are optimised by the density functional theory with a LANL2DZ basis set. The binding energy, the energy gap, the electron affinity, the dissociation energy and the second difference in energy are calculated and discussed. The properties of MgnNi clusters are also discussed when the number of Mg atom increases.展开更多
A theoretical study was carried out on the adsorption of hydrocyanic acid on small Aun (n ≤ 7) clusters using density functional methods. For HCN adsorption on gold clusters, no dependence was found with respect to...A theoretical study was carried out on the adsorption of hydrocyanic acid on small Aun (n ≤ 7) clusters using density functional methods. For HCN adsorption on gold clusters, no dependence was found with respect to the even-odd alternation in relation to the number of gold atoms in the cluster. The HCN molecule is adsorbed at simple adsorption sites (1-fold coordination), perpendicular to the adsorption site. The largest adsorption energy is only about 74.61 kJ·mol^-1, which indicates that the HCN molecule does not decompose and the C-N bond retains triple bond, and that the C-H and C-N stretching frequencies are only weakly perturbed. The adsorbed C-N and C-H stretching frequencies are blue- and red-shifted compared with the values of free HCN, respectively.展开更多
This paper studies supersonic jet-cooled 1-fluoronaphthalene (1FN) clusters by ultraviolet (UV) laser ionization at 281 nm in a time-of-flight mass spectrometer. The (1FN)+ (n=1-3) series cluster ions are obs...This paper studies supersonic jet-cooled 1-fluoronaphthalene (1FN) clusters by ultraviolet (UV) laser ionization at 281 nm in a time-of-flight mass spectrometer. The (1FN)+ (n=1-3) series cluster ions are observed where the signal intensity decreases with increasing cluster size. The effects of sample inlet pressures and ionization laser fluxes to mass spectral distribution are measured. Using density functional theory calculations, it obtains a planar geometric structure of 1FN dimer which is combined through two hydrogen bonds. The mass spectra indicate that the intensity of 1FN trimer is much weaker than that of 1FN dimer and this feature is attributed to the fact that the dimer may form the first "shell" in geometric structure while the larger clusters are generated based on this fundamental unit.展开更多
The internal structures as well as adsorption and hopping energies of monomers, dimers, trimers, tetramers, pentamers and hexamers of water on Pd(111) have been studied by density functional theory (DFT) plane-wav...The internal structures as well as adsorption and hopping energies of monomers, dimers, trimers, tetramers, pentamers and hexamers of water on Pd(111) have been studied by density functional theory (DFT) plane-wave pseudopotential method which performs the firstprinciples quantum-mechanical calculations to explore the properties of crystals and surfaces in materials. Based on the calculations, we suppose that their absorption is via one water molecule for monomers, dimmers and trimers, but three water molecules for pentamers and hexamers. Moreover, there is one water molecule bonding with Pd atom by O atom in pentamers and hexamers, which explains why pentamers and hexamers are stable. The binding energies of polymers may be used to explain why the trimer comes close to two nearby monomers to form a stable pentamer instead of tetramer. And the difference of mobility of small water clusters is due to their different hopping energies.展开更多
Transition metal carbides have been shown to exhibit good catalytic performance that depends on their compositions and morphologies,and understanding such catalytic properties requires knowledge of their precise geome...Transition metal carbides have been shown to exhibit good catalytic performance that depends on their compositions and morphologies,and understanding such catalytic properties requires knowledge of their precise geometry,determination of which is challenging,particularly for clusters formed by multiple elements.In this study,we investigate the geometries and electronic structures of binary V_(n)C_(3)-(n=1-6)clusters and their neutrals using photoelectron spectroscopy and theoretical calculations based on density functional theory.The adiabatic detachment energies of V_(n)C_(3)-,or equally,the electron affinities of V_(n)C_(3),have been determined from the measured photoelectron spectra.Theoretical calculations reveal that the carbon atoms become separate when the number of V atoms increases in the clusters,i.e.,the C-C interactions present in small clusters are replaced by V-C and/or V-V interactions in larger ones.We further explore the composition dependent formation of cubic or cube-like structures in 8-atom VnCm(n+m=8)clusters.展开更多
The electronic and physical properties of PtmPdn (m+n≤5) metal clusters and their interactions with dioxygen have been studied by using hybrid density functional B3LYP method. The total energies, atomization energ...The electronic and physical properties of PtmPdn (m+n≤5) metal clusters and their interactions with dioxygen have been studied by using hybrid density functional B3LYP method. The total energies, atomization energies, vibration frequencies, and charge distributions were reported. The Pt-Pt bridge site modified by Pd atoms was found to be the most active site for the dissociation of dioxygen, which was mainly due to the change of electronic structures of the Pt atoms in bimetallic Pt-Pd clusters.展开更多
The density functional theory B3PW91 with LANL2DZ basis sets has been used to study the possible geometries of Mg2Nin(n = 1–8) clusters. For the lowest energy structures of the clusters, stabilities, electronic prope...The density functional theory B3PW91 with LANL2DZ basis sets has been used to study the possible geometries of Mg2Nin(n = 1–8) clusters. For the lowest energy structures of the clusters, stabilities, electronic properties, and natural bond orbital(NBO) are calculated and discussed. The results show that the doped Mg atoms reduce the stabilities of pure Ni clusters. The Mg2Ni2, Mg2Ni4, and Mg2Ni6clusters are more stable than neighboring clusters. The system appears magic number characteristics. In addition, the hybridization phenomenon occurs, owing to the interaction of Mg and Ni. The result of charge transfer is that Ni atom is negative and the Mg atom is positive. We also conclude that the 3p and 4d orbitals of the Ni atom have an effect on the stabilities of the clusters.展开更多
The geometry and electronic topology properties of Mg/Al hydrotalcite cluster models were comparatively investigated by means of density functional theory at GGA/DND levels.The results suggested that cluster model con...The geometry and electronic topology properties of Mg/Al hydrotalcite cluster models were comparatively investigated by means of density functional theory at GGA/DND levels.The results suggested that cluster model containing seven octahedral cations was the smallest size to be employed to simulate other properties.The fact that the n+ charge of cluster models containing n aluminum atoms can reflect electronic properties of anionic clay layer sheet.The bond lengths of clusters can be modified by terminating with or without OH-/H2O groups in terms of principle of bond order conservation.展开更多
We have systematically investigated the geometrical structures, relative stabilities and electronic properties of small bimetallic AunBe (n = 1, 2, . .. 8) clusters using a density functional method at BP86 level. T...We have systematically investigated the geometrical structures, relative stabilities and electronic properties of small bimetallic AunBe (n = 1, 2, . .. 8) clusters using a density functional method at BP86 level. The optimized geometries reveal that the impurity beryllium atom dramatically affects the structures of the Aun clusters. The averaged binding energies, fragmentation energies, second-order difference of energies, the highest occupied-lowest unoccupied molecular orbital energy gaps and chemical hardness are investigated, All of them exhibit a pronounced odd-even alternation, manifesting that the clusters with even number of gold atoms possess relatively higher stabilities. Especially, the linear Au2Be cluster is magic cluster with the most stable chemical stability. According to the natural population analysis, it is found that charge-transferring direction between Au atom and Be atom changes at the size of n = 4.展开更多
The stable structures and stabilities of AgnH2S(n = 1-10) clusters have been calculated using the B3P86-DFT method. The results predicate that the stable geometries of AgnH2 S clusters can be got by directly adding ...The stable structures and stabilities of AgnH2S(n = 1-10) clusters have been calculated using the B3P86-DFT method. The results predicate that the stable geometries of AgnH2 S clusters can be got by directly adding the H2 S molecule on different sites of Agn clusters. Agn clusters would like to bond with sulfur atom and the H2 S molecules are partial to adsorb at the top site in the clusters. After adsorption, the structures of Agn clusters and H2 S molecule keep the original structures except Ag9. The binding energy of AgnH2 S is distinctly larger than that of pure Agn clusters. The second difference in energy and the HOMO and LUMO gaps of Agn and AgnH2 S exhibit an obvious odd-even oscillation, which demonstrate that the stabilities of even-numbered silver clusters are relatively more stable than the neighboring odd-numbered silver clusters. Mulliken population analysis shows that charges always transfer from the H2 S molecule to Agn clusters in all clusters.展开更多
With the aid of the molecular orbital DMol3 program,the energetics and electronic structures of several AlnC(n = 2-7) configurations have been searched and calculated by improved minimum energy paths(MEPs) by sett...With the aid of the molecular orbital DMol3 program,the energetics and electronic structures of several AlnC(n = 2-7) configurations have been searched and calculated by improved minimum energy paths(MEPs) by setting "imaging product".A new high symmetry,supervalence isomer of Al5C cluster,i.e.,D5h-Al5C,at the local minimum in the MEPs is detected.Several parameters,such as binding energy,HOMO-LUMO energy gap,vertical electron detachment energy and electron affinity energy,are calculated to characterize and evaluate the stability of three Al5C configurations,i.e.,D5h-Al5C,Cs-Al5C and C1-Al5C.The results show that the D5h-Al5C cluster is the ground state structure instead of Cs-Al5C.Due to the formation of many central σ bonds after polymerizing for D5h-Al5C,the decrease of the energy for HOMO orbit results in more territory for HOMO electrons of dislocation effect,then the energy difference between HOMO and LUMO is increasing to enhance the stability of molecules to produce such supervalence structure of Al5C cluster.The configuration evolution between D5h-Al5C,Cs-Al5C and C1-Al5C and the synthesis preference in the mode of Al5 + C → Al5C reveals that the Cs-Al5C and C1-Al5C con-figurations are permissive to coexist with D5h-Al5C structure in energetics.展开更多
This paper investigates the lowest-energy structures, stabilities and electronic properties of (BAs)n clusters (n=1- 14) by means of the density-functional theory. The results show that the lowest-energy structure...This paper investigates the lowest-energy structures, stabilities and electronic properties of (BAs)n clusters (n=1- 14) by means of the density-functional theory. The results show that the lowest-energy structures undergo a structural change from two-dimensional to three-dimensional when n : 4. With the increase of the cluster size (n=6), the (BAs)n clusters tend to adopt cage-like structures, which can be considered as being built from B2As2 and six-membered rings with B-As bond alternative arrangement. The binding energy per atom, second-order energy differences, vertical electron affinity and vertical ionization potential are calculated and discussed. The caculated HOMO-LUMO gaps reveal that the clusters have typical semiconductor characteristics. The analysis of partial density of states suggests that there are strong covalence and molecular characteristics in the clusters.展开更多
基金Project supported by the Doctoral Education Fund of the Education Ministry of Chain (Grant No. 20100181110086) and the National Natural Science Foundation of China (Grant Nos. 11104190 and 10974138).
文摘The equilibrium geometries, relative stabilities, and electronic properties of MnAgm(M=Na, Li; n + m ≤ 7) as well as pure Agn, Nan, Lin (n ≤ 7) clusters are systematically investigated by means of the density functional theory. The optimized geometries reveal that for 2 ≤ n ≤ 7, there are significant similarities in geometry among pure Agn, Nan, and Lin clusters, and the transitions from planar to three-dimensional configurations occur at n = 7, 7, and 6, respectively. In contrast, the first three-dimensional (3D) structures are observed at n + m = 5 for both NanAgm and LinAgm clusters. When n + m ≥5, a striking feature is that the trigonal bipyramid becomes the main subunit of LinAgm. Furthermore, dramatic odd-even alternative behaviours are obtained in the fragmentation energies, secondorder difference energies, highest occupied and lowest unoccupied molecular orbital energy gaps, and chemical hardness for both pure and doped clusters. The analytic results exhibit that clusters with an even electronic configuration (2, 4, 6) possess the weakest chemical reactivity and more enhanced stability.
文摘We study the geometries, stabilities, electronic and magnetic properties of (MgO)n (n=2-10) clusters doped with a single Mn atom using the density functional theory with the gener- alized gradient approximation. The optimized geometries show that the impurity Mn atom prefers to replace the Mg atom which has low coordination number in all the lowest-energy MnMgn-1On (n=2-10) structures. The stability analysis clearly represents that the average binding energies of the doped clusters are larger than those of the corresponding pure (MgO)n clusters. Maximum peaks of the second order energy differences are observed for MnMg~_1On clusters at n=6, 9, implying that these clusters exhibit higher stability than their neighboring clusters. In addition, all the Mn-doped Mg clusters exhibit high total magnetic moments with the exception of MnMgO2 which has 3.00μB. Their magnetic behavior is attributed to the impurity Mn atom, the charge transfer modes, and the size of MnMgn- 1On clusters.
基金Project supported by the Doctoral Education Fund of the Education Ministry of Chain (Grant No. 20100181110086)the National Natural Science Foundation of China (Grant Nos. 11104190 and 10974138).
文摘The equilibrium geometries,relative stabilities,and electronic properties of Mn Agm(M=Na,Li;n + m ≤ 7) as well as pure Ag n,Na n,Li n(n ≤ 7) clusters are systematically investigated by means of the density functional theory.The optimized geometries reveal that for 2 ≤ n ≤ 7,there are significant similarities in geometry among pure Ag n,Na n,and Li n clusters,and the transitions from planar to three-dimensional configurations occur at n = 7,7,and 6,respectively.In contrast,the first three-dimensional(3D) structures are observed at n + m = 5 for both Na n Ag m and Li n Ag m clusters.When n + m ≥ 5,a striking feature is that the trigonal bipyramid becomes the main subunit of Li n Ag m.Furthermore,dramatic odd-even alternative behaviours are obtained in the fragmentation energies,secondorder difference energies,highest occupied and lowest unoccupied molecular orbital energy gaps,and chemical hardness for both pure and doped clusters.The analytic results exhibit that clusters with an even electronic configuration(2,4,6) possess the weakest chemical reactivity and more enhanced stability.
基金supported by the National Natural Science Foundation of China (Grant Nos 10647006 and 10547007)the Natural Science Foundation of Gansu Province of China (Grant No 3ZS042-B25-023)the Prominent Youth Foundation (Grant No Q200704) of LUT and the Scientific Developmental Foundation of LUT
文摘The geometries, electronic structures and related properties of SimN8-m(0 〈 m 〈 8) clusters are studied using density functional theory (DFT) with hybrid functional B3LYP. The calculated results reveal several trends. For any stoichiometric clusters, the lowest energy isomers with an alteration of N and Si atoms are favourable in energy if the numbers of Si and N atoms are large enough to form ... Si N-Si-N... alternative chains. The bond lengths of single Si-N bonds are very close to the corresponding values of the bulk and other SiN clusters. The geometries for N-rich and Si4N4 clusters are planar structures, but three-dimensional structures are favourable in energy for Si-rich clusters. With the increase of m, the isotropic polarizability and average polarizability increase, the total binding energies generally decrease, the HOMO-LUMO gap and vertical ionization potential oscillate with increasing number of valence electrons, and their values with even valence electrons are larger than those with odd valence electrons. The atomic charges, IR and Raman properties are also reported.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11304167 and 51374132)the Postdoctoral Science Foundation of China(Grant No.20110491317)+1 种基金the Young Core Instructor Foundation of Henan Province,China(Grant No.2012GGJS-152)the Natural Science Foundation of Henan Province,China(Grant Nos.132300410209 and 132300410290)
文摘The geometries, stabilities, and electronic properties of FSin (n=1~12) clusters are systematically investigated by using first-principles calculations based on the hybrid density-functional theory at the B3LYP/6-311G level. The geometries are found to undergo a structural change from two-dimensional to three-dimensional structure when the cluster size n equals 3. On the basis of the obtained lowest-energy geometries, the size dependencies of cluster properties, such as averaged binding energy, fragmentation energy, second-order energy difference, HOMO–LUMO (highest occupied molecular orbital–lowest unoccupied molecular orbital) gap and chemical hardness, are discussed. In addition, natural population analysis indicates that the F atom in the most stable FSin cluster is recorded as being negative and the charges always transfer from Si atoms to the F atom in the FSin clusters.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10676022)
文摘The geometries of MgnNi2(n = 1 6) clusters are studied by using the hybrid density functional theory (B3LYP) with LANL2DZ basis sets. For the ground-state structures of MgnNi2 clusters, the stabilities and the electronic properties are investigated. The results show that the groundstate structures and symmetries of Mg clusters change greatly due to the Ni atoms. The average binding energies have a growing tendency while the energy gaps have a declining tendency. In addition, the ionization energies exhibit an odd-even oscillation feature. We also conclude that n = 3, 5 are the magic numbers of the MgnNi2 clusters. The Mg3Ni2 and Mg5Ni2 clusters are more stable than neighbouring clusters, and the MgaNi2 cluster exhibits a higher chemical activity.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10647008 and 50971099)the Research Fund for the Higher Education Doctoral Program (Grant No. 20096101110017)+1 种基金Key Project of Natural Science Foundation of Shaanxi Province of China (Grant No. 2010JZ002)the Graduate Innovation Fund of the Northwest University of China(Grant No. 09YZZ44)
文摘This paper investigates the geometrical structures and relative stabilities of neutral A1Sn (n=2-9) using the density functional theory. Structural optimisation and frequency analysis are performed at the B3LYP/6-311C(d) level. The ground state structures of the A1Sn show that the sulfur atoms prefer not only to evenly distribute on both sides of the aluminum atom but also to form stable structures in AlSn clusters. The structures of pure Sn are fundamentally changed due to the doping of the Al atom. The fragmentation energies and the second-order energy differences are calculated and discussed. Among neutral AlSn (n = 2-9) clusters, AlS4 and AlS6 are the most stable.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10676022)
文摘The possible geometrical and the electronic structures of small MgnNi (n = 1 - 7) clusters are optimised by the density functional theory with a LANL2DZ basis set. The binding energy, the energy gap, the electron affinity, the dissociation energy and the second difference in energy are calculated and discussed. The properties of MgnNi clusters are also discussed when the number of Mg atom increases.
基金Supported by the NNSFC (20673019, 20773024)the funds of Fuzhou University (2008-XQ-07, XRC-0732)
文摘A theoretical study was carried out on the adsorption of hydrocyanic acid on small Aun (n ≤ 7) clusters using density functional methods. For HCN adsorption on gold clusters, no dependence was found with respect to the even-odd alternation in relation to the number of gold atoms in the cluster. The HCN molecule is adsorbed at simple adsorption sites (1-fold coordination), perpendicular to the adsorption site. The largest adsorption energy is only about 74.61 kJ·mol^-1, which indicates that the HCN molecule does not decompose and the C-N bond retains triple bond, and that the C-H and C-N stretching frequencies are only weakly perturbed. The adsorbed C-N and C-H stretching frequencies are blue- and red-shifted compared with the values of free HCN, respectively.
文摘This paper studies supersonic jet-cooled 1-fluoronaphthalene (1FN) clusters by ultraviolet (UV) laser ionization at 281 nm in a time-of-flight mass spectrometer. The (1FN)+ (n=1-3) series cluster ions are observed where the signal intensity decreases with increasing cluster size. The effects of sample inlet pressures and ionization laser fluxes to mass spectral distribution are measured. Using density functional theory calculations, it obtains a planar geometric structure of 1FN dimer which is combined through two hydrogen bonds. The mass spectra indicate that the intensity of 1FN trimer is much weaker than that of 1FN dimer and this feature is attributed to the fact that the dimer may form the first "shell" in geometric structure while the larger clusters are generated based on this fundamental unit.
基金Supported by the Natural Science Foundation of Yunnan Province (No. 2004B0003M)
文摘The internal structures as well as adsorption and hopping energies of monomers, dimers, trimers, tetramers, pentamers and hexamers of water on Pd(111) have been studied by density functional theory (DFT) plane-wave pseudopotential method which performs the firstprinciples quantum-mechanical calculations to explore the properties of crystals and surfaces in materials. Based on the calculations, we suppose that their absorption is via one water molecule for monomers, dimmers and trimers, but three water molecules for pentamers and hexamers. Moreover, there is one water molecule bonding with Pd atom by O atom in pentamers and hexamers, which explains why pentamers and hexamers are stable. The binding energies of polymers may be used to explain why the trimer comes close to two nearby monomers to form a stable pentamer instead of tetramer. And the difference of mobility of small water clusters is due to their different hopping energies.
基金the Doctoral Start-up Funding of Zhengzhou University of Light Industry(No.2017BSJJ030)Henan Province Science Fund for Excellent Young Scholars(No.202300410494)+4 种基金the Beijing Municipal Science and Technology Commission(No.Z191100007219009)for supportsthe VSC(Flemish Supercomputer Center),funded by the Research Foundation-Flanders(FWO)the Flemish Government-department EWIthe support of Xi’an Jiaotong University via the“Young Talent Support Plan”the“Fundamental Research Funds for Central Universities”。
文摘Transition metal carbides have been shown to exhibit good catalytic performance that depends on their compositions and morphologies,and understanding such catalytic properties requires knowledge of their precise geometry,determination of which is challenging,particularly for clusters formed by multiple elements.In this study,we investigate the geometries and electronic structures of binary V_(n)C_(3)-(n=1-6)clusters and their neutrals using photoelectron spectroscopy and theoretical calculations based on density functional theory.The adiabatic detachment energies of V_(n)C_(3)-,or equally,the electron affinities of V_(n)C_(3),have been determined from the measured photoelectron spectra.Theoretical calculations reveal that the carbon atoms become separate when the number of V atoms increases in the clusters,i.e.,the C-C interactions present in small clusters are replaced by V-C and/or V-V interactions in larger ones.We further explore the composition dependent formation of cubic or cube-like structures in 8-atom VnCm(n+m=8)clusters.
基金This work was partly supported by Innovation Foundation of the Chinese Academy of Sciences (K2003D2), National Natural Science Foundation of China (No. 20173060), Hi-tech Research and Development Program of China (2003AA517040) and Knowledge Innovation Program of the Chinese Academy of Sciences (KGCX2-SW-310)
文摘The electronic and physical properties of PtmPdn (m+n≤5) metal clusters and their interactions with dioxygen have been studied by using hybrid density functional B3LYP method. The total energies, atomization energies, vibration frequencies, and charge distributions were reported. The Pt-Pt bridge site modified by Pd atoms was found to be the most active site for the dissociation of dioxygen, which was mainly due to the change of electronic structures of the Pt atoms in bimetallic Pt-Pd clusters.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10676022).
文摘The density functional theory B3PW91 with LANL2DZ basis sets has been used to study the possible geometries of Mg2Nin(n = 1–8) clusters. For the lowest energy structures of the clusters, stabilities, electronic properties, and natural bond orbital(NBO) are calculated and discussed. The results show that the doped Mg atoms reduce the stabilities of pure Ni clusters. The Mg2Ni2, Mg2Ni4, and Mg2Ni6clusters are more stable than neighboring clusters. The system appears magic number characteristics. In addition, the hybridization phenomenon occurs, owing to the interaction of Mg and Ni. The result of charge transfer is that Ni atom is negative and the Mg atom is positive. We also conclude that the 3p and 4d orbitals of the Ni atom have an effect on the stabilities of the clusters.
基金supported by China University of Petroleum (East China) (grant 09CX04045A)
文摘The geometry and electronic topology properties of Mg/Al hydrotalcite cluster models were comparatively investigated by means of density functional theory at GGA/DND levels.The results suggested that cluster model containing seven octahedral cations was the smallest size to be employed to simulate other properties.The fact that the n+ charge of cluster models containing n aluminum atoms can reflect electronic properties of anionic clay layer sheet.The bond lengths of clusters can be modified by terminating with or without OH-/H2O groups in terms of principle of bond order conservation.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10974138)
文摘We have systematically investigated the geometrical structures, relative stabilities and electronic properties of small bimetallic AunBe (n = 1, 2, . .. 8) clusters using a density functional method at BP86 level. The optimized geometries reveal that the impurity beryllium atom dramatically affects the structures of the Aun clusters. The averaged binding energies, fragmentation energies, second-order difference of energies, the highest occupied-lowest unoccupied molecular orbital energy gaps and chemical hardness are investigated, All of them exhibit a pronounced odd-even alternation, manifesting that the clusters with even number of gold atoms possess relatively higher stabilities. Especially, the linear Au2Be cluster is magic cluster with the most stable chemical stability. According to the natural population analysis, it is found that charge-transferring direction between Au atom and Be atom changes at the size of n = 4.
基金supported by the National Natural Science Foundation of China(11247229,11304246)the Scientific Research Program Fund by Shaanxi Provincial Education Department(2013JK0629)+1 种基金the Natural Science Basic Research Plan in Shaanxi Province of China(2014JQ6206)the Innovation and Entrepreneurship Training Project of Provincial College Students
文摘The stable structures and stabilities of AgnH2S(n = 1-10) clusters have been calculated using the B3P86-DFT method. The results predicate that the stable geometries of AgnH2 S clusters can be got by directly adding the H2 S molecule on different sites of Agn clusters. Agn clusters would like to bond with sulfur atom and the H2 S molecules are partial to adsorb at the top site in the clusters. After adsorption, the structures of Agn clusters and H2 S molecule keep the original structures except Ag9. The binding energy of AgnH2 S is distinctly larger than that of pure Agn clusters. The second difference in energy and the HOMO and LUMO gaps of Agn and AgnH2 S exhibit an obvious odd-even oscillation, which demonstrate that the stabilities of even-numbered silver clusters are relatively more stable than the neighboring odd-numbered silver clusters. Mulliken population analysis shows that charges always transfer from the H2 S molecule to Agn clusters in all clusters.
基金Supported by the National Natural Science Foundation of China (No.50771044)the Doctor Start up Foundation of Nanchang Hangkong University (EA201001034)Youth Science Foundation of Jiangxi Educational Committee (GJJ11157)
文摘With the aid of the molecular orbital DMol3 program,the energetics and electronic structures of several AlnC(n = 2-7) configurations have been searched and calculated by improved minimum energy paths(MEPs) by setting "imaging product".A new high symmetry,supervalence isomer of Al5C cluster,i.e.,D5h-Al5C,at the local minimum in the MEPs is detected.Several parameters,such as binding energy,HOMO-LUMO energy gap,vertical electron detachment energy and electron affinity energy,are calculated to characterize and evaluate the stability of three Al5C configurations,i.e.,D5h-Al5C,Cs-Al5C and C1-Al5C.The results show that the D5h-Al5C cluster is the ground state structure instead of Cs-Al5C.Due to the formation of many central σ bonds after polymerizing for D5h-Al5C,the decrease of the energy for HOMO orbit results in more territory for HOMO electrons of dislocation effect,then the energy difference between HOMO and LUMO is increasing to enhance the stability of molecules to produce such supervalence structure of Al5C cluster.The configuration evolution between D5h-Al5C,Cs-Al5C and C1-Al5C and the synthesis preference in the mode of Al5 + C → Al5C reveals that the Cs-Al5C and C1-Al5C con-figurations are permissive to coexist with D5h-Al5C structure in energetics.
基金supported by the National Natural Science Foundation of China (Grant No. 10964012)the Priority Subject Program for Theoretical Physics of Xinjiang Normal University and the Fund of the Education Department of Xinjiang Uygur Autonomous Region of China (Grant No. xjedu2009i27)the Science and Technology Innovation Foundation for Graduate Students of Xinjiang Normal University (Grant No. 20101205)
文摘This paper investigates the lowest-energy structures, stabilities and electronic properties of (BAs)n clusters (n=1- 14) by means of the density-functional theory. The results show that the lowest-energy structures undergo a structural change from two-dimensional to three-dimensional when n : 4. With the increase of the cluster size (n=6), the (BAs)n clusters tend to adopt cage-like structures, which can be considered as being built from B2As2 and six-membered rings with B-As bond alternative arrangement. The binding energy per atom, second-order energy differences, vertical electron affinity and vertical ionization potential are calculated and discussed. The caculated HOMO-LUMO gaps reveal that the clusters have typical semiconductor characteristics. The analysis of partial density of states suggests that there are strong covalence and molecular characteristics in the clusters.