In this paper, we analyze the enthalpy, enthalpy energy density, thermodynamic volume, and the equation of state of a modified white hole. We obtain new possible mathematical connections with some sectors of Number Th...In this paper, we analyze the enthalpy, enthalpy energy density, thermodynamic volume, and the equation of state of a modified white hole. We obtain new possible mathematical connections with some sectors of Number Theory, Ramanujan Recurring Numbers, DN Constant and String Theory, that enable us to extract the quantum geometrical properties of these thermodynamic equations and the implication to the quantum vacuum spacetime geometry of our early universe as they act as the constraints to the nature of quantum gravity of the universe.展开更多
Three-dimensional gravity inversion based on the mass property model is very popular in recent years. The time and efficiency of inversion algorithms is relative to the magnitude of the target mesh. One approach is to...Three-dimensional gravity inversion based on the mass property model is very popular in recent years. The time and efficiency of inversion algorithms is relative to the magnitude of the target mesh. One approach is to search over the entire solution space for a more refined result. However, the inversion will be difficult with the increased parameters in the large search space and the number of computations increases exponentially. |n this paper, we propose a novel approach based on the frequency characteristics of the density distribution over the mesh. The purposes of our study are to reduce the parameters of three- dimensional gravity inversion and to lighten the image quality of the inversion result. The results show that the new method can expedite the inversion processing and get a better geological interpretation than tradition methods.展开更多
The density inversion of gravity gradiometry data has attracted considerable attention;however,in large datasets,the multiplicity and low depth resolution as well as efficiency are constrained by time and computer mem...The density inversion of gravity gradiometry data has attracted considerable attention;however,in large datasets,the multiplicity and low depth resolution as well as efficiency are constrained by time and computer memory requirements.To solve these problems,we improve the reweighting focusing inversion and probability tomography inversion with joint multiple tensors and prior information constraints,and assess the inversion results,computing efficiency,and dataset size.A Message Passing Interface(MPI)-Open Multi-Processing(OpenMP)-Computed Unified Device Architecture(CUDA)multilevel hybrid parallel inversion,named Hybrinv for short,is proposed.Using model and real data from the Vinton Dome,we confirm that Hybrinv can be used to compute the density distribution.For data size of 100×100×20,the hybrid parallel algorithm is fast and based on the run time and scalability we infer that it can be used to process the large-scale data.展开更多
We modeled the effect of the deformation of a Density Gradient Zone (DGZ) on a local gravity field using a cubical model and introduced a new method to simulate a complex DGZ (CDGZ). Then, we analyzed the features...We modeled the effect of the deformation of a Density Gradient Zone (DGZ) on a local gravity field using a cubical model and introduced a new method to simulate a complex DGZ (CDGZ). Then, we analyzed the features of the model for the influence of the deformation of the DGZ on the local gravity field. We concluded that land-based gravity is not sensitive to the thickness of the DGZ and that the magnitude of the contribution of the DGZ is one order less than that of the volume strain with the same displacement.展开更多
The Emeishan large igneous province(hereafter named by its acronym ELIP) is the first accepted large igneous region in China.The current study tries to reconstruct the density structure of the crust in this region. Fo...The Emeishan large igneous province(hereafter named by its acronym ELIP) is the first accepted large igneous region in China.The current study tries to reconstruct the density structure of the crust in this region. For this purpose, we conducted the gravity survey along an 800-km-long profile, which stretched laterally along the latitude 27°N from Lijiang(Yunnan province) to Guiyang(Guizhou province). The fieldwork included 338 gravity measurements distributed from the inner zone to the outer zone of the mantle plume head.After a series of gravity reductions, we calculated the Bouguer gravity anomaly and then constructed the density model for ELIP by iterative forward modeling from an initial density model tightly constrained by wide-angle seismic reflection data. The topography of the Moho, here physically interpreted as a density discontinuity of ~0.4 g·cm^(–3), gradually rises from the inner zone(~50 km deep) to the outer zone(~40 km), describes a thicker crust in the inner zone than in any other segment of the profile and largely reproduces the shape of the Bouguer gravity anomaly curve. Both the Bouguer gravity and the density structure show significant differences with respect to the inner zone and the other two zones of ELIP according to the commonly accepted partition of the Emeishan area. A thicker and denser middle-lower crust seems to be the main feature of the western section of the profile, which is likely related to its mafic magmatic composition due to magmatic underplating of the Permian mantle plume.展开更多
The forward calculation of gravity anomalies is a non-negligible aspect contributing to the time consumption of the entire process of basement relief estimation.In this study,we develop a fast hybrid computing scheme ...The forward calculation of gravity anomalies is a non-negligible aspect contributing to the time consumption of the entire process of basement relief estimation.In this study,we develop a fast hybrid computing scheme to compute the gravity anomaly of a basement.We use the vertical prism source equation in a given region R centered at a certain gravity observation point and the vertical line source equation outside R to derive the gravity anomaly.We observe that the computation with the vertical line source equation is much faster than that of the vertical prism source equation,but the former is slightly inaccurate.Therefore,our method is highly effi cient and able to avoid the errors caused by the low accuracy of the vertical line source equation near the observation point.We then derive the general principle of choosing the size of R via a series of prism model tests.Our tests on the gravity anomaly over the Los Angeles Basin confirm the correctness of our proposed forward strategy.We modify Bott’s method with an accelerating factor to expedite the inversion procedure and presume that the density contrast between the sediments and the basement in a sedimentary basin varies laterally and can be obtained using the equivalent equation.Synthetic data and real data applications in the Weihe Basin illustrate that our proposed method can accurately and effi ciently estimate the basement relief of sedimentary basins.展开更多
Separation density is one of the most concerned operating parameters in gravity beneficiation.Although equal-errors cut point or distribution density is usually used as practical separation density in gravity benefici...Separation density is one of the most concerned operating parameters in gravity beneficiation.Although equal-errors cut point or distribution density is usually used as practical separation density in gravity beneficiation, the gravity separating process complexly affected by many kinds of factors is actually carried out at a fluctuant density; namely, the practical separation density is essentially a random variable.The studied results show that the equal-errors cut point is the mathematical expectation of this random variable, and the distribution density corresponds to the highest separation efficiency in the gravity separation process.This shows that the distribution density is the best working point of the gravity separation equipment under a particular operating condition.Therefore,in order to fully develop the function of the gravity separation equipment, the distribution density should be close to the theoretical separation density unlimitedly in the range of minimum fluctuation.展开更多
An algorithm for calculating gravity effect of three-dimensional (3D) linear density distribution is presented in this paper. The linear continuous density distribution is represented with 3D grid model, which has a ...An algorithm for calculating gravity effect of three-dimensional (3D) linear density distribution is presented in this paper. The linear continuous density distribution is represented with 3D grid model, which has a resemblance to the velocity model used in some seismic tomography codes. The consensus in representation method of density model and velocity model facilitates the seismic-gravity-integrated interpretation or simultaneous inversion. The numerical test of synthetic data shows that although the analytical gravity formula for linear density distribution is more complex than that for piecewise constant density distribution, it takes less time to calculate the gravity effect with linear density model than that with piecewise constant density model. In addition, this method is used in the integrated interpretation of 3D seismological tomography and gravity data in Dabie Mountain area.展开更多
We calculated the energy-momentum density of non-diagonal Bianchi type space-time in two different theories of gravity, General relativity (GR) and the theory of Teleparallel gravity (TG). Firstly, by applying Einstei...We calculated the energy-momentum density of non-diagonal Bianchi type space-time in two different theories of gravity, General relativity (GR) and the theory of Teleparallel gravity (TG). Firstly, by applying Einstein, Landau-Lifshitz, Bergmann-Thomson and M<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">ø</span></span></span>ller prescriptions, using double index complexes in <strong>GR</strong>. Secondly, in the frame work of <strong>TG</strong>, we used the energy momentum complexes of Einstein, Bergmann-Thomson and Landau-Lifshitz. We also study the spacial cases of non-diagonal Bianchi type space-time <strong>BII</strong>, <strong>BVIII</strong> and <strong>BIX</strong>. We obtained the same energy-momentum density components for Einstein and Bergmann-Thomson prescriptions for the above four mentioned space-times that we considered in our work. Also, we found that the energy density component in M<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">ø</span></span></span>ller prescription is zero for all Bianchi types space-times in GR. Furthermore, we show that if the metric components are functions of time t alone, then the total gravitational energy is identically zero.展开更多
The Papua New Guinea-Solomon(PN-SL)arc is one of the regions with active crustal motions and strong geological actions.Thus,its complex subduction system makes it an ideal laboratory for studying the initiation mechan...The Papua New Guinea-Solomon(PN-SL)arc is one of the regions with active crustal motions and strong geological actions.Thus,its complex subduction system makes it an ideal laboratory for studying the initiation mechanism of plate subduction.However,the PN-SL subduction system has not yet been sufficiently studied,and its density structure has yet to be revealed.In this paper,we used the free-air gravity data,Parker-Oldenburg density surface inversion method,and the genetic algorithm density inversion method to obtain the density structure of an approximately 1000-km-long northwest-southeast line crossing the PN-SL subduction system under the constraints of the CRUST1.0 global crustal model,onshore seismic data,and the LLNL-G3Dv3 global P-wave velocity model.The density structure shows that density differences between the plates on the two sides of the trench could play a significant role in plate subduction.展开更多
The use of gravity data has demonstrated capability for monitoring lithological changes on a large scale as a consequence of differentiating basement and sedimentary of buried valleys. Gravity anomalies are associated...The use of gravity data has demonstrated capability for monitoring lithological changes on a large scale as a consequence of differentiating basement and sedimentary of buried valleys. Gravity anomalies are associated with lateral contrasts in density and therefore deformation by faulting or folding will be manifested if accompanied by lateral density changes, otherwise, the vice versa is true. The study’s objective is to evaluate the effectiveness of gravity method in establishing different lithologies in an area. The study has revealed that regional anomaly gravity map presents high anomalies in the Northern region in the NW-SE trend and low anomalies in the southern trend in NW-SE, while the residual anomaly gravity map shows different trends for the low and high gravity anomalies. The gravity anomalies are well interpreted in line with the lithologies of the study area rather than the deformation of the same lithologies. There are observed high values of gravity anomaly values (ranging from -880.2 to -501.2 g.u.) where there are eolian unconsolidated rocks overlying the basement compared to low gravity anomaly values (ranging from -1338.9 to -1088.7 g.u.) where the andesites, trachytes and phonolites overly the basement. The different regional gravity anomalies relate well with different rock densities in the study area along the line profile for radially averaged power spectrum. The gravity highs are noted in the eastern point and are associated with andesites, trachytes, basalts and igneous rocks, while the gravity lows are associated with sandstone, greywacke, arkose, and eolian unconsolidated rock. The utilization of the information from the Power spectrum analysis demonstrates that the depth to the deepest basement rock is 12.8 km which is in the eastern flank, while the shallowest to the basement of 1.1 km to the western flank.展开更多
文摘In this paper, we analyze the enthalpy, enthalpy energy density, thermodynamic volume, and the equation of state of a modified white hole. We obtain new possible mathematical connections with some sectors of Number Theory, Ramanujan Recurring Numbers, DN Constant and String Theory, that enable us to extract the quantum geometrical properties of these thermodynamic equations and the implication to the quantum vacuum spacetime geometry of our early universe as they act as the constraints to the nature of quantum gravity of the universe.
基金supported by the Key Project Fund of the Chinese Academy of Sciences under grant number (kzcx2-yw-203-01)the Major State Basic Research Development Program of China(973 Program,Grant No.2007CB41170404)
文摘Three-dimensional gravity inversion based on the mass property model is very popular in recent years. The time and efficiency of inversion algorithms is relative to the magnitude of the target mesh. One approach is to search over the entire solution space for a more refined result. However, the inversion will be difficult with the increased parameters in the large search space and the number of computations increases exponentially. |n this paper, we propose a novel approach based on the frequency characteristics of the density distribution over the mesh. The purposes of our study are to reduce the parameters of three- dimensional gravity inversion and to lighten the image quality of the inversion result. The results show that the new method can expedite the inversion processing and get a better geological interpretation than tradition methods.
基金support by the China Postdoctoral Science Foundation(2017M621151)Northeastern University Postdoctoral Science Foundation(20180313)+1 种基金the Fundamental Research Funds for Central Universities(N180104020)NSFCShandong Joint Fund of the National Natural Science Foundation of China(U1806208)
文摘The density inversion of gravity gradiometry data has attracted considerable attention;however,in large datasets,the multiplicity and low depth resolution as well as efficiency are constrained by time and computer memory requirements.To solve these problems,we improve the reweighting focusing inversion and probability tomography inversion with joint multiple tensors and prior information constraints,and assess the inversion results,computing efficiency,and dataset size.A Message Passing Interface(MPI)-Open Multi-Processing(OpenMP)-Computed Unified Device Architecture(CUDA)multilevel hybrid parallel inversion,named Hybrinv for short,is proposed.Using model and real data from the Vinton Dome,we confirm that Hybrinv can be used to compute the density distribution.For data size of 100×100×20,the hybrid parallel algorithm is fast and based on the run time and scalability we infer that it can be used to process the large-scale data.
基金supported by the Special Earthquake Research Project of China Earthquake Administration(201208009)and the National Natural Science Foundation of China(41274083)
文摘We modeled the effect of the deformation of a Density Gradient Zone (DGZ) on a local gravity field using a cubical model and introduced a new method to simulate a complex DGZ (CDGZ). Then, we analyzed the features of the model for the influence of the deformation of the DGZ on the local gravity field. We concluded that land-based gravity is not sensitive to the thickness of the DGZ and that the magnitude of the contribution of the DGZ is one order less than that of the volume strain with the same displacement.
基金supported by the National Key Research and Development Project of China (grant 2016YFC0600302)the National Natural Science Foundation of China (grant 41774100)National Basic Research Program of China (973 Program, grant 2011CB808904)
文摘The Emeishan large igneous province(hereafter named by its acronym ELIP) is the first accepted large igneous region in China.The current study tries to reconstruct the density structure of the crust in this region. For this purpose, we conducted the gravity survey along an 800-km-long profile, which stretched laterally along the latitude 27°N from Lijiang(Yunnan province) to Guiyang(Guizhou province). The fieldwork included 338 gravity measurements distributed from the inner zone to the outer zone of the mantle plume head.After a series of gravity reductions, we calculated the Bouguer gravity anomaly and then constructed the density model for ELIP by iterative forward modeling from an initial density model tightly constrained by wide-angle seismic reflection data. The topography of the Moho, here physically interpreted as a density discontinuity of ~0.4 g·cm^(–3), gradually rises from the inner zone(~50 km deep) to the outer zone(~40 km), describes a thicker crust in the inner zone than in any other segment of the profile and largely reproduces the shape of the Bouguer gravity anomaly curve. Both the Bouguer gravity and the density structure show significant differences with respect to the inner zone and the other two zones of ELIP according to the commonly accepted partition of the Emeishan area. A thicker and denser middle-lower crust seems to be the main feature of the western section of the profile, which is likely related to its mafic magmatic composition due to magmatic underplating of the Permian mantle plume.
基金supported by the National Natural Science Foundation of China(41904115)。
文摘The forward calculation of gravity anomalies is a non-negligible aspect contributing to the time consumption of the entire process of basement relief estimation.In this study,we develop a fast hybrid computing scheme to compute the gravity anomaly of a basement.We use the vertical prism source equation in a given region R centered at a certain gravity observation point and the vertical line source equation outside R to derive the gravity anomaly.We observe that the computation with the vertical line source equation is much faster than that of the vertical prism source equation,but the former is slightly inaccurate.Therefore,our method is highly effi cient and able to avoid the errors caused by the low accuracy of the vertical line source equation near the observation point.We then derive the general principle of choosing the size of R via a series of prism model tests.Our tests on the gravity anomaly over the Los Angeles Basin confirm the correctness of our proposed forward strategy.We modify Bott’s method with an accelerating factor to expedite the inversion procedure and presume that the density contrast between the sediments and the basement in a sedimentary basin varies laterally and can be obtained using the equivalent equation.Synthetic data and real data applications in the Weihe Basin illustrate that our proposed method can accurately and effi ciently estimate the basement relief of sedimentary basins.
基金Supported by the Young Science Foundation of China(50025411)the Doctoral Science Research Foundation of University(20030290015)
文摘Separation density is one of the most concerned operating parameters in gravity beneficiation.Although equal-errors cut point or distribution density is usually used as practical separation density in gravity beneficiation, the gravity separating process complexly affected by many kinds of factors is actually carried out at a fluctuant density; namely, the practical separation density is essentially a random variable.The studied results show that the equal-errors cut point is the mathematical expectation of this random variable, and the distribution density corresponds to the highest separation efficiency in the gravity separation process.This shows that the distribution density is the best working point of the gravity separation equipment under a particular operating condition.Therefore,in order to fully develop the function of the gravity separation equipment, the distribution density should be close to the theoretical separation density unlimitedly in the range of minimum fluctuation.
文摘An algorithm for calculating gravity effect of three-dimensional (3D) linear density distribution is presented in this paper. The linear continuous density distribution is represented with 3D grid model, which has a resemblance to the velocity model used in some seismic tomography codes. The consensus in representation method of density model and velocity model facilitates the seismic-gravity-integrated interpretation or simultaneous inversion. The numerical test of synthetic data shows that although the analytical gravity formula for linear density distribution is more complex than that for piecewise constant density distribution, it takes less time to calculate the gravity effect with linear density model than that with piecewise constant density model. In addition, this method is used in the integrated interpretation of 3D seismological tomography and gravity data in Dabie Mountain area.
文摘We calculated the energy-momentum density of non-diagonal Bianchi type space-time in two different theories of gravity, General relativity (GR) and the theory of Teleparallel gravity (TG). Firstly, by applying Einstein, Landau-Lifshitz, Bergmann-Thomson and M<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">ø</span></span></span>ller prescriptions, using double index complexes in <strong>GR</strong>. Secondly, in the frame work of <strong>TG</strong>, we used the energy momentum complexes of Einstein, Bergmann-Thomson and Landau-Lifshitz. We also study the spacial cases of non-diagonal Bianchi type space-time <strong>BII</strong>, <strong>BVIII</strong> and <strong>BIX</strong>. We obtained the same energy-momentum density components for Einstein and Bergmann-Thomson prescriptions for the above four mentioned space-times that we considered in our work. Also, we found that the energy density component in M<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">ø</span></span></span>ller prescription is zero for all Bianchi types space-times in GR. Furthermore, we show that if the metric components are functions of time t alone, then the total gravitational energy is identically zero.
基金the National Natural Science Foundation of China(Nos.91858215,42076224)。
文摘The Papua New Guinea-Solomon(PN-SL)arc is one of the regions with active crustal motions and strong geological actions.Thus,its complex subduction system makes it an ideal laboratory for studying the initiation mechanism of plate subduction.However,the PN-SL subduction system has not yet been sufficiently studied,and its density structure has yet to be revealed.In this paper,we used the free-air gravity data,Parker-Oldenburg density surface inversion method,and the genetic algorithm density inversion method to obtain the density structure of an approximately 1000-km-long northwest-southeast line crossing the PN-SL subduction system under the constraints of the CRUST1.0 global crustal model,onshore seismic data,and the LLNL-G3Dv3 global P-wave velocity model.The density structure shows that density differences between the plates on the two sides of the trench could play a significant role in plate subduction.
文摘The use of gravity data has demonstrated capability for monitoring lithological changes on a large scale as a consequence of differentiating basement and sedimentary of buried valleys. Gravity anomalies are associated with lateral contrasts in density and therefore deformation by faulting or folding will be manifested if accompanied by lateral density changes, otherwise, the vice versa is true. The study’s objective is to evaluate the effectiveness of gravity method in establishing different lithologies in an area. The study has revealed that regional anomaly gravity map presents high anomalies in the Northern region in the NW-SE trend and low anomalies in the southern trend in NW-SE, while the residual anomaly gravity map shows different trends for the low and high gravity anomalies. The gravity anomalies are well interpreted in line with the lithologies of the study area rather than the deformation of the same lithologies. There are observed high values of gravity anomaly values (ranging from -880.2 to -501.2 g.u.) where there are eolian unconsolidated rocks overlying the basement compared to low gravity anomaly values (ranging from -1338.9 to -1088.7 g.u.) where the andesites, trachytes and phonolites overly the basement. The different regional gravity anomalies relate well with different rock densities in the study area along the line profile for radially averaged power spectrum. The gravity highs are noted in the eastern point and are associated with andesites, trachytes, basalts and igneous rocks, while the gravity lows are associated with sandstone, greywacke, arkose, and eolian unconsolidated rock. The utilization of the information from the Power spectrum analysis demonstrates that the depth to the deepest basement rock is 12.8 km which is in the eastern flank, while the shallowest to the basement of 1.1 km to the western flank.