期刊文献+
共找到94篇文章
< 1 2 5 >
每页显示 20 50 100
Immunomodulatory properties of dental tissue-derived mesenchymal stem cells: Implication in disease and tissue regeneration 被引量:27
1
作者 Oleh Andrukhov Christian Behm +1 位作者 Alice Blufstein Xiaohui Rausch-Fan 《World Journal of Stem Cells》 SCIE 2019年第9期604-617,共14页
Mesenchymal stem cells(MSCs)are considered as an attractive tool for tissue regeneration and possess a strong immunomodulatory ability.Dental tissuederived MSCs can be isolated from different sources,such as the denta... Mesenchymal stem cells(MSCs)are considered as an attractive tool for tissue regeneration and possess a strong immunomodulatory ability.Dental tissuederived MSCs can be isolated from different sources,such as the dental pulp,periodontal ligament,deciduous teeth,apical papilla,dental follicles and gingiva.According to numerous in vitro studies,the effect of dental MSCs on immune cells might depend on several factors,such as the experimental setting,MSC tissue source and type of immune cell preparation.Most studies have shown that the immunomodulatory activity of dental MSCs is strongly upregulated by activated immune cells.MSCs exert mostly immunosuppressive effects,leading to the dampening of immune cell activation.Thus,the reciprocal interaction between dental MSCs and immune cells represents an elegant mechanism that potentially contributes to tissue homeostasis and inflammatory disease progression.Although the immunomodulatory potential of dental MSCs has been extensively investigated in vitro,its role in vivo remains obscure.A few studies have reported that the MSCs isolated from inflamed dental tissues have a compromised immunomodulatory ability.Moreover,the expression of some immunomodulatory proteins is enhanced in periodontal disease and even shows some correlation with disease severity.MSC-based immunomodulation may play an essential role in the regeneration of different dental tissues.Therefore,immunomodulation-based strategies may be a very promising tool in regenerative dentistry. 展开更多
关键词 mesenchymal stem cellS dental TISSUE IMMUNOMODULATION Peripheral blood MONONUCLEAR cellS Oral diseases TISSUE regeneration
下载PDF
Therapeutic and regenerative potential of different sources of mesenchymal stem cells for cardiovascular diseases
2
作者 YARA ALZGHOUL HALA J.BANI ISSA +8 位作者 AHMAD K.SANAJLEH TAQWA ALABDUH FATIMAH RABABAH MAHA AL-SHDAIFAT EJLAL ABU-EL-RUB FATIMAH ALMAHASNEH RAMADA R.KHASAWNEH AYMAN ALZU’BI HUTHAIFA MAGABLEH 《BIOCELL》 SCIE 2024年第4期559-569,共11页
Mesenchymalstemcells(MSCs)areidealcandidatesfortreatingmanycardiovasculardiseases.MSCscanmodify the internal cardiac microenvironment to facilitate their immunomodulatory and differentiation abilities,which are essent... Mesenchymalstemcells(MSCs)areidealcandidatesfortreatingmanycardiovasculardiseases.MSCscanmodify the internal cardiac microenvironment to facilitate their immunomodulatory and differentiation abilities,which are essential to restore heart function.MSCs can be easily isolated from different sources,including bone marrow,adipose tissues,umbilical cord,and dental pulp.MSCs from various sources differ in their regenerative and therapeutic abilities for cardiovascular disorders.In this review,we will summarize the therapeutic potential of each MSC source for heart diseases and highlight the possible molecular mechanisms of each source to restore cardiac function. 展开更多
关键词 Bone marrow mesenchymal stem cells Adipose tissue mesenchymal stem cells dental pulp stem cells Umbilical cord mesenchymal stem cells CARDIOMYOCYTES Regeneration Myocardial infarction mesenchymal stem cells DIFFERENTIATION IMMUNOMODULATION
下载PDF
Outcomes of combined mitochondria and mesenchymal stem cellsderived exosome therapy in rat acute respiratory distress syndrome and sepsis
3
作者 Kun-Chen Lin Wen-Feng Fang +5 位作者 Jui-Ning Yeh John Y Chiang Hsin-Ju Chiang Pei-Lin Shao Pei-Hsun Sung Hon-Kan Yip 《World Journal of Stem Cells》 SCIE 2024年第6期690-707,共18页
BACKGROUND The treatment of acute respiratory distress syndrome(ARDS)complicated by sepsis syndrome(SS)remains challenging.AIM To investigate whether combined adipose-derived mesenchymal-stem-cells(ADMSCs)-derived exo... BACKGROUND The treatment of acute respiratory distress syndrome(ARDS)complicated by sepsis syndrome(SS)remains challenging.AIM To investigate whether combined adipose-derived mesenchymal-stem-cells(ADMSCs)-derived exosome(EXAD)and exogenous mitochondria(mitoEx)protect the lung from ARDS complicated by SS.METHODS In vitro study,including L2 cells treated with lipopolysaccharide(LPS)and in vivo study including male-adult-SD rats categorized into groups 1(sham-operated-control),2(ARDS-SS),3(ARDS-SS+EXAD),4(ARDS-SS+mitoEx),and 5(ARDS-SS+EXAD+mitoEx),were included in the present study.RESULTS In vitro study showed an abundance of mitoEx found in recipient-L2 cells,resulting in significantly higher mitochondrial-cytochrome-C,adenosine triphosphate and relative mitochondrial DNA levels(P<0.001).The protein levels of inflammation[interleukin(IL)-1β/tumor necrosis factor(TNF)-α/nuclear factor-κB/toll-like receptor(TLR)-4/matrix-metalloproteinase(MMP)-9/oxidative-stress(NOX-1/NOX-2)/apoptosis(cleaved-caspase3/cleaved-poly(ADP-ribose)polymerase)]were significantly attenuated in lipopolysaccharide(LPS)-treated L2 cells with EXAD treatment than without EXAD treatment,whereas the protein expressions of cellular junctions[occluding/β-catenin/zonula occludens(ZO)-1/E-cadherin]exhibited an opposite pattern of inflam-mation(all P<0.001).Animals were euthanized by 72 h post-48 h-ARDS induction,and lung tissues were harvested.By 72 h,flow cytometric analysis of bronchoalveolar lavage fluid demonstrated that the levels of inflam-matory cells(Ly6G+/CD14+/CD68+/CD11b/c+/myeloperoxidase+)and albumin were lowest in group 1,highest in group 2,and significantly higher in groups 3 and 4 than in group 5(all P<0.0001),whereas arterial oxygen-saturation(SaO2%)displayed an opposite pattern of albumin among the groups.Histopathological findings of lung injury/fibrosis area and inflammatory/DNA-damaged markers(CD68+/γ-H2AX)displayed an identical pattern of SaO2%among the groups(all P<0.0001).The protein expressions of inflammatory(TLR-4/MMP-9/IL-1β/TNF-α)/oxidative stress(NOX-1/NOX-2/p22phox/oxidized protein)/mitochondrial-damaged(cytosolic-cytochrome-C/dynamin-related protein 1)/autophagic(beclin-1/Atg-5/ratio of LC3B-II/LC3B-I)biomarkers exhibited a similar manner,whereas antioxidants[nuclear respiratory factor(Nrf)-1/Nrf-2]/cellular junctions(ZO-1/E-cadherin)/mitochondrial electron transport chain(complex I-V)exhibited an opposite manner of albumin among the groups(all P<0.0001).CONCLUSION Combined EXAD-mitoEx therapy was better than merely one for protecting the lung against ARDS-SS induced injury. 展开更多
关键词 Acute respiratory distress syndrome Sepsis syndrome EXOSOMES MITOCHONDRIA Adipose tissue-derived mesenchymal stem cells INFLAMMATION
下载PDF
KDM6B epigenetically regulates odontogenic differentiation of dental mesenchymal stem cells 被引量:18
4
作者 Juan Xu Bo Yu +1 位作者 Christine Hong Cun-Yu Wang 《International Journal of Oral Science》 SCIE CAS CSCD 2013年第4期200-205,共6页
Mesenchymal stem cells (MSCs) have been identified and isolated from dental tissues, including stem cells from apical papilla, which demonstrated the ability to differentiate into dentin-forming odontoblasts. The hi... Mesenchymal stem cells (MSCs) have been identified and isolated from dental tissues, including stem cells from apical papilla, which demonstrated the ability to differentiate into dentin-forming odontoblasts. The histone demethylase KDM6B (also known as JMJD3) was shown to play a key role in promoting osteogenic commitment by removing epigenetic marks H3K27me3 from the promoters of osteogenic genes. Whether KDM6B is involved in odontogenic differentiation of dental MSCs, however, is not known. Here, we explored the role of KDM6B in dental MSC fate determination into the odontogenic lineage. Using shRNA-expressing lentivirus, we performed KDM6B knockdown in dental MSCs and observed that KDM6B depletion leads to a significant reduction in alkaline phosphate (ALP) activity and in formation of mineralized nodules assessed by Alizarin Red staining. Additionally, mRNA expression of odontogenic marker gene SP7 (osterix, OSX), as well as extracellular matrix genes BGLAP (osteoclacin, OCN) and SPP1 (osteopontin, OPN), was suppressed by KDM6B depletion. When KDM6B was overexpressed in KDM6B-knockdown MSCs, odontogenic differentiation was restored, further confirming the facilitating role of KDM6B in odontogenic commitment. Mechanistically, KDM6B was recruited to bone morphogenic protein 2 (BMP2) promoters and the subsequent removal of silencing H3K27me3 marks led to the activation of this odontogenic master transcription gene. Taken together, our results demonstrated the critical role of a histone demethylase in the epigenetic regulation of odontogenic differentiation of dental MSCs. KDM6B may present as a potential therapeutic target in the regeneration of tooth structures and the repair of craniofacial defects. 展开更多
关键词 bone morphogenic protein dental mesenchymal stem cell EPIGENETICS KDM6B odontogenic differentiation
下载PDF
Single CD271 marker isolates mesenchymal stem cells from human dental pulp 被引量:2
5
作者 Ruth Alvarez Hye-Lim Lee +1 位作者 Christine Hong Cun-Yu Wang 《International Journal of Oral Science》 SCIE CAS CSCD 2015年第4期205-212,共8页
Mesenchymal stem cells (MSCs) are a promising tool in regenerative medicine due to their capacity to differentiate into multiple lineages. In addition to MSCs isolated from bone marrow (BMSCs), adult MSCs are isol... Mesenchymal stem cells (MSCs) are a promising tool in regenerative medicine due to their capacity to differentiate into multiple lineages. In addition to MSCs isolated from bone marrow (BMSCs), adult MSCs are isolated from craniofacial tissues including dental pulp tissues (DPs) using various stem cell surface markers. However, there has been a lack of consensus on a set of surface makers that are reproducibly effective at isolating putative multipotent dental mesenchymal stem cel^s (~M^Cs). II1 ~his stucly, we used clif^et(~nt combinations of surface markers (CD51/CD140a, CD271, and STRO-1/CD146) to isolate homogeneous populations of DMSCs from heterogeneous dental pulp cells (DPCs) obtained from DP and compared their capacity to undergo multilineage differentiation. Fluorescence-activated cell sorting revealed that 27.3% of DPCs were CD51+/CD140a+, 10.6% were CD271+, and 0.3% were STRO-1+/CD146+. Under odontogenic conditions, all three subsets of isolated DMSCs exhibited differentiation capacity into odontogenic lineages. Among these isolated subsets of DMSCs, CD271+ DMSCs demonstrated the greatest odontogenic potential. While all three combinations of surface markers in this study successfully isolated DMSCs from DPCs, the single CD271 marker presents the most effective stem cell surface marker for identification of DMSCs with high odontogenic potential. Isolated CD271+ DMSCs could potentially be utilized for future clinical applications in dentistry and regenerative medicine. 展开更多
关键词 dental mesenchymal stem cells odontogenic differentiation cell surface markers dental pulp fluorescence-activated cellsorting
下载PDF
Optimization of adipose tissue-derived mesenchymal stromal cells transplantation for bone marrow repopulation following irradiation
6
作者 Min-Jung Kim Won Moon +4 位作者 Jeonghoon Heo Sangwook Lim Seung-Hyun Lee Jee-Yeong Jeong Sang Joon Lee 《World Journal of Stem Cells》 SCIE 2022年第3期245-263,共19页
BACKGROUND Bone marrow(BM)suppression is one of the most common side effects of radiotherapy and the primary cause of death following exposure to irradiation.Despite concerted efforts,there is no definitive treatment ... BACKGROUND Bone marrow(BM)suppression is one of the most common side effects of radiotherapy and the primary cause of death following exposure to irradiation.Despite concerted efforts,there is no definitive treatment method available.Recent studies have reported using mesenchymal stromal cells(MSCs),but their therapeutic effects are contested.AIM We administered and examined the effects of various amounts of adipose-derived MSCs(ADSCs)in mice with radiation-induced BM suppression.METHODS Mice were divided into three groups:Normal control group,irradiated(RT)group,and stem cell-treated group following whole-body irradiation(WBI).Mouse ADSCs(mADSCs)were transplanted into the peritoneal cavity either once or three times at 5×10^(5) cells/200μL.The white blood cell count and the levels of,plasma cytokines,BM mRNA,and BM surface markers were compared between the three groups.Human BM-derived CD34+hematopoietic progenitor cells were co-cultured with human ADSCs(hADSCs)or incubated in the presence of hADSCs conditioned media to investigate the effect on human cells in vitro.RESULTS The survival rate of mice that received one transplant of mADSCs was higher than that of mice that received three transplants.Multiple transplantations of ADSCs delayed the repopulation of BM hematopoietic stem cells.Anti-inflammatory effects and M2 polarization by intraperitoneal ADSCs might suppress erythropoiesis and induce myelopoiesis in sub-lethally RT mice.CONCLUSION The results suggested that an optimal amount of MSCs could improve survival rates post-WBI. 展开更多
关键词 Adipose tissue-derived stem cells Bone marrow suppression mesenchymal stromal cells RADIATION cell therapy
下载PDF
Dental mesenchymal stromal/stem cells in different microenvironments— implications in regenerative therapy
7
作者 Ivana Okić-Đorđević Hristina Obradović +4 位作者 Tamara Kukolj Anđelija Petrović Slavko Mojsilović Diana Bugarski Aleksandra Jauković 《World Journal of Stem Cells》 SCIE 2021年第12期1863-1880,共18页
Current research data reveal microenvironment as a significant modifier of physical functions,pathologic changes,as well as the therapeutic effects of stem cells.When comparing regeneration potential of various stem c... Current research data reveal microenvironment as a significant modifier of physical functions,pathologic changes,as well as the therapeutic effects of stem cells.When comparing regeneration potential of various stem cell types used for cytotherapy and tissue engineering,mesenchymal stem cells(MSCs)are currently the most attractive cell source for bone and tooth regeneration due to their differentiation and immunomodulatory potential and lack of ethical issues associated with their use.The microenvironment of donors and recipients selected in cytotherapy plays a crucial role in regenerative potential of transplanted MSCs,indicating interactions of cells with their microenvironment indispensable in MSC-mediated bone and dental regeneration.Since a variety of MSC populations have been procured from different parts of the tooth and tooth-supporting tissues,MSCs of dental origin and their achievements in capacity to reconstitute various dental tissues have gained attention of many research groups over the years.This review discusses recent advances in comparative analyses of dental MSC regeneration potential with regards to their tissue origin and specific microenvironmental conditions,giving additional insight into the current clinical application of these cells. 展开更多
关键词 MICROENVIRONMENT dental mesenchymal stem cells Modulation of regenerative potential Tissue origin Hypoxia microenvironment Inflammatory microenvironment Clinical application
下载PDF
Mesenchymal Stem Cells and Tooth Engineering 被引量:19
8
作者 Li Peng Ling Ye Xue-dong Zhout 《International Journal of Oral Science》 SCIE CAS CSCD 2009年第1期6-12,共7页
Tooth loss compromises human oral health. Although several prosthetic methods, such as artificial denture and dental implants, are clinical therapies to tooth loss problems, they are thought to have safety and usage t... Tooth loss compromises human oral health. Although several prosthetic methods, such as artificial denture and dental implants, are clinical therapies to tooth loss problems, they are thought to have safety and usage time issues. Recently, tooth tissue engineering has attracted more and more attention. Stem cell based tissue engineering is thought to be a promising way to replace the missing tooth. Mesenchymal stem cells (MSCs) are multipotent stem cells which can differentiate into a variety of cell types. The potential MSCs for tooth regeneration mainly include stem cells from human exfoliated deciduous teeth (SHEDs), adult dental pulp stem cells (DPSCs), stem cells from the apical part of the papilla (SCAPs), stem cells from the dental follicle (DFSCs), periodontal ligament stem cells (PDLSCs) and bone marrow derived mesenchymal stem cells (BMSCs). This review outlines the recent progress in the mesenchymal stem cells used in tooth regeneration. 展开更多
关键词 mesenchymal stem cell tooth engineering dental pulp stem cell
下载PDF
Characterization of the osteogenic potential of mesenchymal stem cells from human periodontal ligament based on cell surface markers 被引量:9
9
作者 Ruth Alvarez Hye-Lim Lee +1 位作者 Cun-Yu Wang Christine Hong 《International Journal of Oral Science》 SCIE CAS CSCD 2015年第4期213-219,共7页
Mesenchymal stem cell (MSC)-mediated therapy has been shown to be clinically effective in regenerating tissue defects. For improved regenerative therapy, it is critical to isolate homogenous populations of MSCs with... Mesenchymal stem cell (MSC)-mediated therapy has been shown to be clinically effective in regenerating tissue defects. For improved regenerative therapy, it is critical to isolate homogenous populations of MSCs with high capacity to differentiate into appropriate tissues. The utilization of stem cell surface antigens provides a means to identify MSCs from various tissues. However, few surface markers that consistently isolate highly regenerative MSCs have been validated, making it challenging for routine clinical applications and making it all the more imperative to identify reliable surface markers. In this study, we used three surface marker combinations: CD51/CD140a, CD271, and STRO-1/CD146 for the isolation of homogenous populations of dental mesenchymal stem cells (DMSCs) from heterogeneous periodontal ligament cells (PDLCs). Fluorescence-activated cell sorting analysis revealed that 24% of PDLCs were CD51+/CD140a+, 0.8% were CD271+, and 2.4% were STRO-1+/CD146+. Sorted cell populations were further assessed for their multipotent properties by inducing osteogenic and chondrogenic differentiation. All three subsets of isolated DMSCs exhibited differentiation capacity into osteogenic and chondrogenic lineages but with varying degrees. CD271+ DMSCs demonstrated the greatest osteogenic potential with strong induction of osteogenic markers such as DLX5, RUNX2, and BGLAP. Our study provides evidence that surface marker combinations used in this study are sufficient markers for the isolation of DMSCs from PDLCs. These results provide important insight into using specific surface markers for identifying homogenous populations of DMSCs for their improved utilization in regenerative medicine. 展开更多
关键词 cell surface markers dental mesenchymal stem cells periodontal ligament
下载PDF
Human dental pulp stem cells: Applications in future regenerative medicine 被引量:21
10
作者 Pravin D Potdar Yogita D Jethmalani 《World Journal of Stem Cells》 SCIE CAS 2015年第5期839-851,共13页
Stem cells are pluripotent cells, having a property of differentiating into various types of cells of human body. Several studies have developed mesenchymal stem cells(MSCs) from various human tissues,peripheral blood... Stem cells are pluripotent cells, having a property of differentiating into various types of cells of human body. Several studies have developed mesenchymal stem cells(MSCs) from various human tissues,peripheral blood and body fluids. These cells are then characterized by cellular and molecular markers to understand their specific phenotypes. Dental pulp stem cells(DPSCs) are having a MSCs phenotype and they are differentiated into neuron, cardiomyocytes, chondrocytes, osteoblasts, liver cells and β cells of islet of pancreas. Thus, DPSCs have shown great potentiality to use in regenerative medicine for treatment of various human diseases including dental related problems. These cells can also be developed into induced pluripotent stem cells by incorporation of pluripotency markers and use for regenerative therapies of various diseases. The DPSCs are derived from various dental tissues such as human exfoliated deciduous teeth, apical papilla, periodontal ligament and dental follicle tissue. This review will overview the information about isolation, cellular and molecular characterization and differentiation of DPSCs into various types of human cells and thus these cells have important applications in regenerative therapies for various diseases. This review will be most useful for postgraduate dental students as well as scientists working in the field of oral pathology and oral medicine. 展开更多
关键词 Human dental PULP stem cellS mesenchymalstem cellS DENTIN PLURIPOTENCY stem cell therapy Molecular MARKERS
下载PDF
Priming strategies for controlling stem cell fate: Applications and challenges in dental tissue regeneration 被引量:3
11
作者 Si-Yuan Zhang Jia-Yin Ren Bo Yang 《World Journal of Stem Cells》 SCIE 2021年第11期1625-1646,共22页
Mesenchymal stromal cells(MSCs)have attracted intense interest in the field of dental tissue regeneration.Dental tissue is a popular source of MSCs because MSCs can be obtained with minimally invasive procedures.MSCs ... Mesenchymal stromal cells(MSCs)have attracted intense interest in the field of dental tissue regeneration.Dental tissue is a popular source of MSCs because MSCs can be obtained with minimally invasive procedures.MSCs possess distinct inherent properties of self-renewal,immunomodulation,proangiogenic potential,and multilineage potency,as well as being readily available and easy to culture.However,major issues,including poor engraftment and low survival rates in vivo,remain to be resolved before large-scale application is feasible in clinical treatments.Thus,some recent investigations have sought ways to optimize MSC functions in vitro and in vivo.Currently,priming culture conditions,pretreatment with mechanical and physical stimuli,preconditioning with cytokines and growth factors,and genetic modification of MSCs are considered to be the main strategies;all of which could contribute to improving MSC efficacy in dental regenerative medicine.Research in this field has made tremendous progress and continues to gather interest and stimulate innovation.In this review,we summarize the priming approaches for enhancing the intrinsic biological properties of MSCs such as migration,antiapoptotic effect,proangiogenic potential,and regenerative properties.Challenges in current approaches associated with MSC modification and possible future solutions are also indicated.We aim to outline the present understanding of priming approaches to improve the therapeutic effects of MSCs on dental tissue regeneration. 展开更多
关键词 mesenchymal stem cells PRIMING dental regeneration Culture conditions CYTOKINES Growth factors Genetic modification
下载PDF
Regenerative medicine using dental pulp stem cells for liver diseases 被引量:2
12
作者 Shogo Ohkoshi Hajime Hara +2 位作者 Haruka Hirono Kazuhiko Watanabe Katsuhiko Hasegawa 《World Journal of Gastrointestinal Pharmacology and Therapeutics》 CAS 2017年第1期1-6,共6页
Acute liver failure is a refractory disease and its pro-gnosis, if not treated using liver transplantation, is extremely poor. It is a good candidate for regenerative medicine, where stem cell-based therapies play a c... Acute liver failure is a refractory disease and its pro-gnosis, if not treated using liver transplantation, is extremely poor. It is a good candidate for regenerative medicine, where stem cell-based therapies play a central role. Mesenchymal stem cells(MSCs) are known to differentiate into multiple cell lineages including hepatocytes. Autologous cell transplant without any foreign gene induction is feasible using MSCs, thereby avoiding possible risks of tumorigenesis and immune rejection. Dental pulp also contains an MSC population that differentiates into hepatocytes. A point worthy of special mention is that dental pulp can be obtained from deciduous teeth during childhood and can be subsequently harvested when necessary after deposition in a tooth bank. MSCs have not only a regenerative capacity but also act in an anti--inflammatory manner via paracrine mechanisms. Promising efficacies and difficulties with the use of MSC derived from teeth are summarized in this review. 展开更多
关键词 dental pulp mesenchymal stem cell Regenerative medicine Liver disease Tooth bank
下载PDF
Dental stem cell-conditioned medium for tissue regeneration: Optimization of production and storage 被引量:1
13
作者 Batoul Chouaib Frédéric Cuisinier Pierre-Yves Collart-Dutilleul 《World Journal of Stem Cells》 SCIE 2022年第4期287-302,共16页
BACKGROUND Mesenchymal stem cells(MSC)effects on tissue regeneration are mainly mediated by their secreted substances(secretome),inducing their paracrine activity.This Conditioned medium(CM),including soluble factors(... BACKGROUND Mesenchymal stem cells(MSC)effects on tissue regeneration are mainly mediated by their secreted substances(secretome),inducing their paracrine activity.This Conditioned medium(CM),including soluble factors(proteins,nucleic acids,lipids)and extracellular vesicles is emerging as a potential alternative to cell therapy.However,the manufacturing of CM suffers from variable procedures and protocols leading to varying results between studies.Besides,there is no welldefined optimized procedure targeting specific applications in regenerative medicine.AIM To focus on conditioned medium produced from dental MSC(DMSC-CM),we reviewed the current parameters and manufacturing protocols,in order to propose a standardization and optimization of these manufacturing procedures.METHODS We have selected all publications investigating the effects of dental MSC secretome in in vitro and in vivo models of tissue regeneration,in accordance with the PRISMA guidelines.RESULTS A total of 351 results were identified.And based on the inclusion criteria described above,118 unique articles were included in the systematic review.DMSC-CM production was considered at three stages:before CM recovery(cell sources for CM),during CM production(culture conditions)and after production(CM treatment).CONCLUSION No clear consensus could be recovered as evidence-based methods,but we were able to describe the most commonly used protocols:donors under 30 years of age,dental pulp stem cells and exfoliated deciduous tooth stem cells with cell passage between 1 and 5,at a confluence of 70%to 80%.CM were often collected during 48 h,and stored at-80°C.It is important to point out that the preconditioning environment had a significant impact on DMSCCM content and efficiency. 展开更多
关键词 Tissue engineering mesenchymal stem cells dental Conditioned medium SECRETOME REGENERATION
下载PDF
Multidifferentiation potential of dental-derived stem cells 被引量:1
14
作者 Jing-Yao Yin Xing-Hong Luo +5 位作者 Wei-Qing Feng Sheng-Hong Miao Ting-Ting Ning Qian Lei Tao Jiang Dan-Dan Ma 《World Journal of Stem Cells》 SCIE 2021年第5期342-365,共24页
Tooth-related diseases and tooth loss are widespread and are a major public health issue.The loss of teeth can affect chewing,speech,appearance and even psychology.Therefore,the science of tooth regeneration has emerg... Tooth-related diseases and tooth loss are widespread and are a major public health issue.The loss of teeth can affect chewing,speech,appearance and even psychology.Therefore,the science of tooth regeneration has emerged,and attention has focused on tooth regeneration based on the principles of tooth development and stem cells combined with tissue engineering technology.As undifferentiated stem cells in normal tooth tissues,dental mesenchymal stem cells(DMSCs),which are a desirable source of autologous stem cells,play a significant role in tooth regeneration.Researchers hope to reconstruct the complete tooth tissues with normal functions and vascularization by utilizing the odontogenic differentiation potential of DMSCs.Moreover,DMSCs also have the ability to differentiate towards cells of other tissue types due to their multipotency.This review focuses on the multipotential capacity of DMSCs to differentiate into various tissues,such as bone,cartilage,tendon,vessels,neural tissues,muscle-like tissues,hepatic-like tissues,eye tissues and glands and the influence of various regulatory factors,such as non-coding RNAs,signaling pathways,inflammation,aging and exosomes,on the odontogenic/osteogenic differentiation of DMSCs in tooth regeneration.The application of DMSCs in regenerative medicine and tissue engineering will be improved if the differentiation characteristics of DMSCs can be fully utilized,and the factors that regulate their differentiation can be well controlled. 展开更多
关键词 dental mesenchymal stem cells Regenerative medicine Tissue engineering MULTIPOTENCY Odontogenic differentiation Osteogenic differentiation
下载PDF
Immunomodulatory properties of mesenchymal stem cells/dental stem cells and their therapeutic applications 被引量:8
15
作者 Peishan Li Qianmin Ou +1 位作者 Songtao Shi Changshun Shao 《Cellular & Molecular Immunology》 SCIE CAS CSCD 2023年第6期558-569,共12页
Mesenchymal stem/stromal cells(MsCs)are widely distributed in the body and play essential roles in tissue regeneration and homeostasis.MsCs can be isolated from discarded tissues,expanded in vitro and used as therapeu... Mesenchymal stem/stromal cells(MsCs)are widely distributed in the body and play essential roles in tissue regeneration and homeostasis.MsCs can be isolated from discarded tissues,expanded in vitro and used as therapeutics for autoimmune diseases and other chronic disorders.MsCs promote tissue regeneration and homeostasis by primarily acting on immune cells.At least six different types of MsCs have been isolated from postnatal dental tissues and have remarkable immunomodulatory properties.Dental stem cells(DsCs)have been demonstrated to have therapeutic effects on several systemic inflammatory diseases.Conversely,MsCs derived from nondental tissues such as the umbilical cord exhibit great benefits in the management of periodontitis in preclinical studies.Here,we discuss the main therapeutic uses of MSCs/DSCs,their mechanisms,extrinsic inflammatory cues and the intrinsic metabolic circuitries that govern the immunomodulatory functions of MSCs/DSCs.Increased understanding of the mechanisms underpinning the immunomodulatory functions of MSCs/DSCs is expected to aid in the development of more potent and precise MSC/DSC-based therapeutics. 展开更多
关键词 mesenchymal stem cells dental stem cells IMMUNOREGULATION INFLAMMATION
原文传递
Tooth-derived stem cells: Update and perspectives 被引量:6
16
作者 Miki Taketomi Saito Karina Gonzales Silvério +2 位作者 Márcio Zaffalon Casati Enilson Antonio Sallum Francisco Humberto Nociti Jr 《World Journal of Stem Cells》 SCIE CAS 2015年第2期399-407,共9页
Tissue engineering is an emerging field of science that focuses on creating suitable conditions for the regeneration of tissues. The basic components for tissue engineering involve an interactive triad of scaffolds, s... Tissue engineering is an emerging field of science that focuses on creating suitable conditions for the regeneration of tissues. The basic components for tissue engineering involve an interactive triad of scaffolds, signaling molecules, and cells. In this context,stem cells(SCs) present the characteristics of selfrenewal and differentiation capacity, which make them promising candidates for tissue engineering. Although they present some common markers, such as cluster of differentiation(CD)105, CD146 and STRO-1, SCs derived from various tissues have different patterns in relation to proliferation, clonogenicity, and differentiation abilities in vitro and in vivo. Tooth-derived tissues have been proposed as an accessible source to obtain SCs with limited morbidity, and various tooth-derived SCs(TDSCs) have been isolated and characterized, such as dental pulp SCs, SCs from human exfoliated deciduous teeth, periodontal ligament SCs, dental follicle progenitor cells, SCs from apical papilla, and periodontal ligament of deciduous teeth SCs. However, heterogeneity among these populations has been observed, and the best method to select the most appropriate TDSCs for regeneration approaches has not yet been established. The objective of this review is to outline the current knowledge concerning the various types of TDSCs, and discuss the perspectives for their use in regenerative approaches. 展开更多
关键词 cell-based therapy mesenchymal stem cellS dental stem cellS DIFFERENTIATION Tissue engineering
下载PDF
Stem cells: novel players in the treatment of erectile dysfunction 被引量:6
17
作者 Haiyang Zhang Maarten Albersen +1 位作者 Xunbo Jin Guiting Lin 《Asian Journal of Andrology》 SCIE CAS CSCD 2012年第1期145-155,179,共12页
Stem cells are defined by their capacity for both self-renewal and directed differentiation; thus, they represent great promise for regenerative medicine. Historically, stem cells have been categorized as either embry... Stem cells are defined by their capacity for both self-renewal and directed differentiation; thus, they represent great promise for regenerative medicine. Historically, stem cells have been categorized as either embryonic stem cells (ESCs) or adult stem cells (ASCs). It was previously believed that only ESCs hold the ability to differentiate into any cell type, whereas ASCs have the capacity to give rise only to cells of a given germ layer. More recently, however, numerous studies demonstrated the ability of ASCs to differentiate into cell types beyond their tissue origin. The aim of this review was to summarize contemporary evidence regarding stem cell availability, differentiation, and more specifically, the potential of these cells in the diagnosis and treatment of erectile dysfunction (ED) in both animal models and human research. We performed a search on PubMed for articles related to definition, iocalisation and circulation of stem cells as well as the application of stem cells in both diagnosis and treatment of ED. Strong evidence supports the concept that stem cell therapy is potentially the next therapeutic approach for ED. To date, a large spectrum of stem cells, including bone marrow mesenchymal stem cells, adipose tissue-derived stem cells and muscle-derived stem cells, have been investigated for neural, vascular, endothelial or smooth muscle regeneration in animal models for ED. In addition, several subtypes of ASCs are localized in the penis, and circulating endogenous stem cells can be employed to predict the outcome of ED and ED-related cardiovascular diseases. 展开更多
关键词 adipose tissue-derived stem cells bone marrow stem cells erectile dysfunction mesenchymal stem cells stem cells
下载PDF
Dental pulp cell bank as a possible future source of individual hepatocytes 被引量:2
18
作者 Shogo Ohkoshi Haruka Hirono +1 位作者 Taka Nakahara Hiroshi Ishikawa 《World Journal of Hepatology》 CAS 2018年第10期702-707,共6页
Mesenchymal stem cells(MSCs) as a source for regenerative medicine are now the subject of much clinical attention. There are high expectations due to their safety, low tumorigenic risk, and low ethical concerns. MSC t... Mesenchymal stem cells(MSCs) as a source for regenerative medicine are now the subject of much clinical attention. There are high expectations due to their safety, low tumorigenic risk, and low ethical concerns. MSC therapy has been approved for acute graft-versus host diseases since 2015. Tooth-derived MSCs are known to have a great potential in their proliferation and differentiation capacities, even when compared with bone-marrow-derived MSCs. In particular, stem cells from human exfoliated deciduous teeth(SHEDs) are the best candidates for personal cell banking(dental pulp cell bank), because they can be obtained less invasively in the natural process of individual growth. SHEDs are known to differentiate into hepatocytes. There have been several studies showing the effectiveness of SHEDs on the treatment of liver failure in animal models. They may exert their effects either by repopulation of cells in injured liver or by paracrine mechanisms due to their immuneregulatory functions. Moreover, it may be possible to use each individuals' dental pulp cells as a future source of tailor-made differentiated hepatocytes in the context of a bioartificial liver or liver-on-a-chip to screen for drug toxicity. 展开更多
关键词 mesenchymal stem cellS stem cellS from human exfoliating teeth HEPATOCYTES dental PULP cell BANK Liver diseases
下载PDF
Comparative analysis of different feeder layers with 3T3 fibroblasts for culturing rabbits limbal stem cells 被引量:3
19
作者 Hui-Xian Wang Xiao-Wei Gao +4 位作者 Bing Ren Yan Cai Wen-Jing Li Yu-Li Yang Yi-Jian Li 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2017年第7期1021-1027,共7页
AIM: To explore the possibility of human umbilical cord mesenchymal stem cells(h UCMSCs), human umbilical vein endothelial cells(h UVECs), human dental pulp stem cells(h DPSCs) and human periodontal ligament st... AIM: To explore the possibility of human umbilical cord mesenchymal stem cells(h UCMSCs), human umbilical vein endothelial cells(h UVECs), human dental pulp stem cells(h DPSCs) and human periodontal ligament stem cells(h PDLSCs) serving as feeder cells in co-culture systems for the cultivation of limbal stem cells.METHODS: Different feeder layers were cultured in Dulbecco's modified Eagle's medium(DMEM)/F12 and were treated with mitomycin C. Rabbits limbal stem cells(LSCs) were co-cultured on h UCMSCs, h UVECs, h DPSCs, h PDLSCs and NIH-3T3, and then comparative analysis were made between each group to see their respective colony-forming efficiency(CFE) assay and immunofluorescence(IPO13,CK3/12).RESULTS: The efficiency of the four type cells in supporting the LSCs morphology and its cellular differentiation was similar to that of NIH-3T3 fibroblasts as demonstrated by the immunostaining properties analysis, with each group exhibiting a similar strong expression pattern of IPO13, but lacking CK3 and CK12 expression in terms of immunostaining. But h UCMSCs, h DPSCs and h PDLSCs feeder layers were superior in promoting colony formation potential of cells when compared to h UVECs and feedercell-free culture.CONCLUSION: hUCMSCs, hDPSCs and hPDLSCs can be a suitable alternative to conventional mouse NIH-3T3 feeder cells, so that risk of zoonotic infection can be diminished. 展开更多
关键词 limbal stem cells feeder layers umbilical cord mesenchymal stem cells umbilical vein endothelial cells dental pulp stem cells periodontal ligament stem cells
下载PDF
Stem cell therapy for erectile dysfunction 被引量:2
20
作者 Etsu Suzuki Hiroaki Nishimatsu Yukio Homma 《World Journal of Clinical Urology》 2014年第3期272-282,共11页
Erectile dysfunction(ED)is an important health problem that has commonly been clinically treated using phosphodiesterase type 5 inhibitors(PDE5Is).However,PDE5Is are less effective when the structure of the cavernous ... Erectile dysfunction(ED)is an important health problem that has commonly been clinically treated using phosphodiesterase type 5 inhibitors(PDE5Is).However,PDE5Is are less effective when the structure of the cavernous body has been severely injured,and thus regeneration is required.Stem cell therapy has been investigated as a possible means for regenerating the injured cavernous body.Stem cells are classified into embryonic stem cells and adult stem cells(ASCs),and the intracavernous injection of ASCs has been explored as a therapy in animal ED models.Bone marrowderived mesenchymal stem cells and adipose tissuederived stem cells are major sources of ASCs used for the treatment of ED,and accumulated evidence now suggests that ASCs are useful in the restoration of erectile function and the regeneration of the cavernous body.However,the mechanisms by which ASCs recover erectile function remain controversial.Some studies indicated that ASCs were differentiated into the vascular endothelial cells,vascular smooth muscle cells,and nerve cells that originally resided in the cavernous body,whereas other studies have suggested that ASCs improved erectile function via the secretion of anti-apoptotic and/or proangiogenic cytokines ratherthan differentiation into other cell types.In this paper,we reviewed the characteristics of stem cells used for the treatment of ED,and the possible mechanisms by which these cells exert their effects.We also discussed the problems to be solved before implementation in the clinical setting. 展开更多
关键词 Erectile dysfunction stem cell therapy Bone marrow-derived mesenchymal stem cellS Adipose tissue-derived stem cellS Endothelial PROGENITOR cellS ADRENOMEDULLIN ANGIOPOIETIN-1
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部