Deoxynivalenol(DON)is a mycotoxin that is produced by various species of Fusarium and is ubiquitous in food and feed.At low concentrations,it can cause metabolic disorders in animals and humans and,at high concentrati...Deoxynivalenol(DON)is a mycotoxin that is produced by various species of Fusarium and is ubiquitous in food and feed.At low concentrations,it can cause metabolic disorders in animals and humans and,at high concentrations,it can lead to pathological changes in the body.The impact of DON on human/animal health and animal productivity has thus attracted a great deal of attention around the world.DON causes severe damage to the intestine,including compromised intestinal barrier,mucosal damage,weakened immune function,and alterations in gut microbiota composition.These effects exacerbate intestinal infections and inflammation in livestock and poultry,posing adverse effects on overall health.Furthermore,research into biological methods for DON detoxification is a crucial avenue for future studies.This includes the utilization of adsorption,enzymatic degradation,and other biological approaches to mitigate DON's impact,offering new strategies for prevention and treatment of DON-induced diseases.Future research will focus on identifying highly efficient detoxifying microorganisms or enzymes to reduce DON levels in food and feed,thereby mitigating its risks to both animals and human health.展开更多
Background Deoxynivalenol(DON)is a mycotoxin that has received recognition worldwide because of its ability to cause growth delay,nutrient malabsorption,weight loss,emesis,and a reduction of feed intake in livestock.S...Background Deoxynivalenol(DON)is a mycotoxin that has received recognition worldwide because of its ability to cause growth delay,nutrient malabsorption,weight loss,emesis,and a reduction of feed intake in livestock.Since DON-contaminated feedstuff is absorbed in the gastrointestinal tract,we used chicken organoids to assess the DON-induced dysfunction of the small intestine.Results We established a culture system using chicken organoids and characterized the organoids at passages 1 and 10.We confirmed the mRNA expression levels of various cell markers in the organoids,such as KI67,leucine-rich repeat containing G protein-coupled receptor 5(Lgr5),mucin 2(MUC2),chromogranin A(CHGA),cytokeratin 19(CK19),lysozyme(LYZ),and microtubule-associated doublecortin-like kinase 1(DCLK1),and compared the results to those of the small intestine.Our results showed that the organoids displayed functional similarities in permeability compared to the small intestine.DON damaged the tight junctions of the organoids,which resulted in increased permeability.Conclusions Our organoid culture displayed topological,genetic,and functional similarities with the small intes-tine cells.Based on these similarities,we confirmed that DON causes small intestine dysfunction.Chicken organoids offer a practical model for the research of harmful substances.展开更多
Background Deoxynivalenol(DON)is a widespread issue for feed and food safety,leading to animal and human health risks.The objective of this study was to determine whether ferroptosis is involved in DON-induced intesti...Background Deoxynivalenol(DON)is a widespread issue for feed and food safety,leading to animal and human health risks.The objective of this study was to determine whether ferroptosis is involved in DON-induced intestinal injury in piglets.Three groups of 21-day-old male weanling piglets(n 4,serum and small intestines were=7/group)were fed a control diet,or diet adding 1.0 or 3.0 mg DON/kg.At week collected to assay for biochemistry,histology,redox status and ferroptosis-related genes expression.In addition,the involvement of ferroptosis and the role of FTL gene in DON-induced cell death were further verified in the IPEC-J2 cells.Results Compared to the control,dietary supplementation of DON at 1.0 and 3.0 mg/kg induced different degrees of damage in the duodenum,jejunum and ileum,and increased(P<0.05)serum lipopolysaccharide concentration by 46.2%-51.4%.Dietary DON supplementation at 1.0 and(or)3.0 mg/kg increased(P<0.05)concentrations of malondialdehyde(17.4%-86.5%)and protein carbonyl by 33.1%-92.3%in the duodenum,jejunum and ileum.In addition,dietary supplemented with DON upregulated(P<0.05)ferroptotic gene(DMT1)and anti-ferroptotic genes(FTL and FTH1),while downregulated(P<0.05)anti-ferroptotic genes(FPN,FSP1 and CISD1)in the duodenum of the porcine.Furthermore,the in vitro study has demonstrated that deferiprone,a potent ferroptotic inhibitor,mitigated(P<0.05)DON-induced cytotoxicity in porcine small intestinal IPEC-J2 cells.Additionally,deferiprone prevented or alleviated(P<0.05)the dysregulation of ferroptosis-related genes(ACSL4 and FTL)by DON in IPEC-J2 cells.Moreover,specific siRNA knockdown FTL gene expression compromised the DON-induced cell death in IPEC-J2 cells.Conclusions In conclusion,this study revealed that ferroptosis is involved in DON-induced intestinal damage in porcine,and sheds a new light on the toxicity of DON to piglets.展开更多
该研究采用普鲁士蓝纳米粒子(Prussian blue nanoparticles,PBNPs)作为信号标签,通过制备PBNPs和聚多巴胺包裹普鲁士蓝纳米粒子(polydopamine coated Prussian blue nanoparticles,PB@PDA),优化测试参数、测试试纸条灵敏度和特异性等,研...该研究采用普鲁士蓝纳米粒子(Prussian blue nanoparticles,PBNPs)作为信号标签,通过制备PBNPs和聚多巴胺包裹普鲁士蓝纳米粒子(polydopamine coated Prussian blue nanoparticles,PB@PDA),优化测试参数、测试试纸条灵敏度和特异性等,研究PBNPs和PB@PDA对呕吐毒素(deoxynivalenol,DON)的检测性能。结果表明,在最优实验条件下,所构建的基于PBNPs和PB@PDA的免疫层析试纸条对DON标准溶液视觉检出限分别为1.0 ng/mL和0.2 ng/mL,在0.1~0.5 ng/mL保持良好的线性关系,PB@PDA比PBNPs-LFIA检测灵敏度提高5倍,2种试纸条均显示良好的特异性。将PBNPs和PB@PDA两种试纸条应用于小麦样品检测,显示试纸条能排除小麦基质干扰,其检测限分别为20 ng/g和5 ng/g,且PB@PDA检测灵敏度高于商品化胶体金试纸条(10 ng/g)。可见,PB@PDA试纸条表现高灵敏性和抗干扰性,可满足呕吐毒素国家安全标准的限量检测要求,为现场快速筛查小麦中呕吐毒素污染提供一种新方法。展开更多
In this study, the influences of various environmental factors on the degradation of deoxynivalenol (DON) in wheat grains were investigated using a triple quadrupole LC-MS/MS system. After being treated under differ...In this study, the influences of various environmental factors on the degradation of deoxynivalenol (DON) in wheat grains were investigated using a triple quadrupole LC-MS/MS system. After being treated under different conditions for 150 d, DON toxin in wheat grains exhibited the degradation rate of 78.85%-87.00% and degradation half-life of 54.57-71.44 d. According to the accelerating effects of different conditions on DON degradation, natural light 〉 strong light (10 000 lx) 〉 darkness, 90% humidity 〉50% humidity, but high temperature could not accelerate the degradation of DON toxin.展开更多
基金funded by the National Natural Science Foundation of China(32273074,31972746,31872538 and 31772809)the Basic Scientific Research Project of Liaoning Provincial Department of Education,China(LJKZ0632)。
文摘Deoxynivalenol(DON)is a mycotoxin that is produced by various species of Fusarium and is ubiquitous in food and feed.At low concentrations,it can cause metabolic disorders in animals and humans and,at high concentrations,it can lead to pathological changes in the body.The impact of DON on human/animal health and animal productivity has thus attracted a great deal of attention around the world.DON causes severe damage to the intestine,including compromised intestinal barrier,mucosal damage,weakened immune function,and alterations in gut microbiota composition.These effects exacerbate intestinal infections and inflammation in livestock and poultry,posing adverse effects on overall health.Furthermore,research into biological methods for DON detoxification is a crucial avenue for future studies.This includes the utilization of adsorption,enzymatic degradation,and other biological approaches to mitigate DON's impact,offering new strategies for prevention and treatment of DON-induced diseases.Future research will focus on identifying highly efficient detoxifying microorganisms or enzymes to reduce DON levels in food and feed,thereby mitigating its risks to both animals and human health.
基金This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2022R1I1A3070740).
文摘Background Deoxynivalenol(DON)is a mycotoxin that has received recognition worldwide because of its ability to cause growth delay,nutrient malabsorption,weight loss,emesis,and a reduction of feed intake in livestock.Since DON-contaminated feedstuff is absorbed in the gastrointestinal tract,we used chicken organoids to assess the DON-induced dysfunction of the small intestine.Results We established a culture system using chicken organoids and characterized the organoids at passages 1 and 10.We confirmed the mRNA expression levels of various cell markers in the organoids,such as KI67,leucine-rich repeat containing G protein-coupled receptor 5(Lgr5),mucin 2(MUC2),chromogranin A(CHGA),cytokeratin 19(CK19),lysozyme(LYZ),and microtubule-associated doublecortin-like kinase 1(DCLK1),and compared the results to those of the small intestine.Our results showed that the organoids displayed functional similarities in permeability compared to the small intestine.DON damaged the tight junctions of the organoids,which resulted in increased permeability.Conclusions Our organoid culture displayed topological,genetic,and functional similarities with the small intes-tine cells.Based on these similarities,we confirmed that DON causes small intestine dysfunction.Chicken organoids offer a practical model for the research of harmful substances.
基金partially supported by the National Key Research and Development Program of ChinaProjects(2016YFD0501207 and 2018YFD0500601)a donation from Jiangsu Aomai Bio-technology Co.,Ltd。
文摘Background Deoxynivalenol(DON)is a widespread issue for feed and food safety,leading to animal and human health risks.The objective of this study was to determine whether ferroptosis is involved in DON-induced intestinal injury in piglets.Three groups of 21-day-old male weanling piglets(n 4,serum and small intestines were=7/group)were fed a control diet,or diet adding 1.0 or 3.0 mg DON/kg.At week collected to assay for biochemistry,histology,redox status and ferroptosis-related genes expression.In addition,the involvement of ferroptosis and the role of FTL gene in DON-induced cell death were further verified in the IPEC-J2 cells.Results Compared to the control,dietary supplementation of DON at 1.0 and 3.0 mg/kg induced different degrees of damage in the duodenum,jejunum and ileum,and increased(P<0.05)serum lipopolysaccharide concentration by 46.2%-51.4%.Dietary DON supplementation at 1.0 and(or)3.0 mg/kg increased(P<0.05)concentrations of malondialdehyde(17.4%-86.5%)and protein carbonyl by 33.1%-92.3%in the duodenum,jejunum and ileum.In addition,dietary supplemented with DON upregulated(P<0.05)ferroptotic gene(DMT1)and anti-ferroptotic genes(FTL and FTH1),while downregulated(P<0.05)anti-ferroptotic genes(FPN,FSP1 and CISD1)in the duodenum of the porcine.Furthermore,the in vitro study has demonstrated that deferiprone,a potent ferroptotic inhibitor,mitigated(P<0.05)DON-induced cytotoxicity in porcine small intestinal IPEC-J2 cells.Additionally,deferiprone prevented or alleviated(P<0.05)the dysregulation of ferroptosis-related genes(ACSL4 and FTL)by DON in IPEC-J2 cells.Moreover,specific siRNA knockdown FTL gene expression compromised the DON-induced cell death in IPEC-J2 cells.Conclusions In conclusion,this study revealed that ferroptosis is involved in DON-induced intestinal damage in porcine,and sheds a new light on the toxicity of DON to piglets.
基金Supported by the Youth Innovation Fund of President of Anhui Academy of Agricultural Sciences(13B1144)Key Science and Technology Project of Anhui Province(1301032138)+1 种基金Special Basic Research Fund(2013FY113400)Scientific and Technological Innovation Team Project of Anhui Academy of Agricultural Sciences(14C1105)~~
文摘In this study, the influences of various environmental factors on the degradation of deoxynivalenol (DON) in wheat grains were investigated using a triple quadrupole LC-MS/MS system. After being treated under different conditions for 150 d, DON toxin in wheat grains exhibited the degradation rate of 78.85%-87.00% and degradation half-life of 54.57-71.44 d. According to the accelerating effects of different conditions on DON degradation, natural light 〉 strong light (10 000 lx) 〉 darkness, 90% humidity 〉50% humidity, but high temperature could not accelerate the degradation of DON toxin.