Objective Nephrolithiasis is one of the most common disorders of the urinary tract. The aim of this study was to examine a possible relationship between DNase Ⅰ/Ⅱ activity and E3 SUMO-protein ligase NSE2 in the sera...Objective Nephrolithiasis is one of the most common disorders of the urinary tract. The aim of this study was to examine a possible relationship between DNase Ⅰ/Ⅱ activity and E3 SUMO-protein ligase NSE2 in the sera of nephrolithiasis patients to evaluate the possibility of a new biomarker for evaluating kidney damage. Methods Sixty nephrolithiasis patients and 50 control patients were enrolled in a case-control study. Their blood urea, creatinine, protein levels and DNase Ⅰ/Ⅱ activity levels were measured by spectrometry. Serum NSMCE2 levels were measured by ELISA. Blood was collected from patients of the government health clinics in Kuantan-Pahang and fulfilled the inclusion criteria. Results The result indicated that mean levels of sera NSMCE2 have a significantly increase(P〈0.01) in patients compared to control group. Compared with control subjects, activities and specific activities of serum DNase Ⅰ and Ⅱ were significantly elevated in nephrolithiasis patients(P〈0.01). Conclusion This study suggests that an increase in serum concentrations of DNase Ⅰ/Ⅱ and E3 SUMO-protein ligase NSE2 level can be used as indicators for the diagnosis of kidney injury in patients with nephrolithiasis.展开更多
Background Previous studies have suggested that interrupted clearance of nuclear DNA-protein complexes after cell death might initiate and propagate systemic lupus erythematosus (SLE). Deoxyribonuclease Ⅰ (DNaseⅠ) ...Background Previous studies have suggested that interrupted clearance of nuclear DNA-protein complexes after cell death might initiate and propagate systemic lupus erythematosus (SLE). Deoxyribonuclease Ⅰ (DNaseⅠ) may be responsible for the removal of DNA from nuclear antigens at sites of high cell turnover, thus preventing the onset of SLE. The purpose of this study was to genotype the single nucleotide polymorphisms (SNPs) of DNase1 and characterize its gene expression and alternatively spliced transcripts in Chinese patients with SLE in order to unde rstand the pathogenic role of DNase1 in human SLE.Methods Four SNPs located at the 3’ end of the DNase1 gene, as listed on the SNP website, were selected for analysis. Those SNPs with relatively high heterozygosity were chosen for genotyping in 312 Chinese SLE families using the Taqman minor groove binder (MGB) allelic discrimination method. Haplotypes were constructed and linkage disequilibrium tests were performed using GeneHunter. DNase1 mRNA expression was detected using real-time polymerase chain reaction (PCR), and alternatively spliced transcripts were isolated using capillary electrophoresis. Any effects the specific SNP haplotypes had on DNase1 gene expression and the alternatively spliced transcripts were also assessed.Results rs179982 and rs1053874 had high heterozygosity, about 0.5 in this Chinese cohort, while rs1059857 was also found to be heterozygous. Analysis of the haplotype combining rs179982-rs1030874 (C-G) and rs179982-rs1030874-rs1059857 (C-G-G) revealed a skewed transmission in favor of affected offspring. DNase1 gene expression was higher in SLE patients than in normal controls (P<0.001), but this was not related to disease activity or SNP haplotype. Capillary electrophoresis revealed that the pattern of alternatively spliced transcripts in patients differed from that of normal controls. Furthermore, different SNP haplotype combinations generated different transcript patterns in SLE patients. Conclusions The SNP haplotypes are in linkage disequilibrium in Chinese SLE patients and may induce the disease through a modification of DNase1 mRNA splicing rather than at the level of mRNA expression. There is a relatively unique transcript band in SLE patients independent of special haplotype, which suggests that other unknown factors might be involved in adjusting gene expression.展开更多
基金supported by grants from the International Islamic University Malaysia,the research management centre(No.IIUM/504/5/29/1)
文摘Objective Nephrolithiasis is one of the most common disorders of the urinary tract. The aim of this study was to examine a possible relationship between DNase Ⅰ/Ⅱ activity and E3 SUMO-protein ligase NSE2 in the sera of nephrolithiasis patients to evaluate the possibility of a new biomarker for evaluating kidney damage. Methods Sixty nephrolithiasis patients and 50 control patients were enrolled in a case-control study. Their blood urea, creatinine, protein levels and DNase Ⅰ/Ⅱ activity levels were measured by spectrometry. Serum NSMCE2 levels were measured by ELISA. Blood was collected from patients of the government health clinics in Kuantan-Pahang and fulfilled the inclusion criteria. Results The result indicated that mean levels of sera NSMCE2 have a significantly increase(P〈0.01) in patients compared to control group. Compared with control subjects, activities and specific activities of serum DNase Ⅰ and Ⅱ were significantly elevated in nephrolithiasis patients(P〈0.01). Conclusion This study suggests that an increase in serum concentrations of DNase Ⅰ/Ⅱ and E3 SUMO-protein ligase NSE2 level can be used as indicators for the diagnosis of kidney injury in patients with nephrolithiasis.
文摘Background Previous studies have suggested that interrupted clearance of nuclear DNA-protein complexes after cell death might initiate and propagate systemic lupus erythematosus (SLE). Deoxyribonuclease Ⅰ (DNaseⅠ) may be responsible for the removal of DNA from nuclear antigens at sites of high cell turnover, thus preventing the onset of SLE. The purpose of this study was to genotype the single nucleotide polymorphisms (SNPs) of DNase1 and characterize its gene expression and alternatively spliced transcripts in Chinese patients with SLE in order to unde rstand the pathogenic role of DNase1 in human SLE.Methods Four SNPs located at the 3’ end of the DNase1 gene, as listed on the SNP website, were selected for analysis. Those SNPs with relatively high heterozygosity were chosen for genotyping in 312 Chinese SLE families using the Taqman minor groove binder (MGB) allelic discrimination method. Haplotypes were constructed and linkage disequilibrium tests were performed using GeneHunter. DNase1 mRNA expression was detected using real-time polymerase chain reaction (PCR), and alternatively spliced transcripts were isolated using capillary electrophoresis. Any effects the specific SNP haplotypes had on DNase1 gene expression and the alternatively spliced transcripts were also assessed.Results rs179982 and rs1053874 had high heterozygosity, about 0.5 in this Chinese cohort, while rs1059857 was also found to be heterozygous. Analysis of the haplotype combining rs179982-rs1030874 (C-G) and rs179982-rs1030874-rs1059857 (C-G-G) revealed a skewed transmission in favor of affected offspring. DNase1 gene expression was higher in SLE patients than in normal controls (P<0.001), but this was not related to disease activity or SNP haplotype. Capillary electrophoresis revealed that the pattern of alternatively spliced transcripts in patients differed from that of normal controls. Furthermore, different SNP haplotype combinations generated different transcript patterns in SLE patients. Conclusions The SNP haplotypes are in linkage disequilibrium in Chinese SLE patients and may induce the disease through a modification of DNase1 mRNA splicing rather than at the level of mRNA expression. There is a relatively unique transcript band in SLE patients independent of special haplotype, which suggests that other unknown factors might be involved in adjusting gene expression.
文摘工程结构在制造工艺过程中或使用期间会产生裂纹,对结构断裂路径的预测和研究是防治工程安全问题发生的重要手段。在考虑裂纹尖端应力场常数项T应力的基础上对传统的最大周向应力准则(Maximum tangential stress criterion,MTS)和最小应变能密度因子准则(Minimum strain energy density criterion,SED)进行修正,采用Python语言对ABAQUS的前、后处理和有限元计算模块进行二次开发,通过计算最优解的粒子群算法(Particle swarm optimization,PSO)将修正后的准则编入裂纹自动扩展程序脚本中。利用上述二次开发程序对初始纯Ⅰ型裂纹的扩展路径进行模拟,结果表明:采用ABAQUS脚本程序模拟结果与相关文献实验结果吻合,表明了程序的有效性,进而实现考虑T应力的多种断裂准则对裂纹扩展路径的预测;当T应力值处于一定范围内时,修正的MTS准则无法预测裂纹发生的偏转现象,扩展路径呈直线,此时可采用修正的SED准则进行预测。