The improved method has been presented for knowledge reduction in rough sets (R-S) theory, when R-S is used to model the information expression of oil and vibration diagnosis. Therefore, the typical fault simulation...The improved method has been presented for knowledge reduction in rough sets (R-S) theory, when R-S is used to model the information expression of oil and vibration diagnosis. Therefore, the typical fault simulation tests of rolling bearings have been made, and the application method of R-S has been also analysed in this paper. The diagnosis model of holding rack fault in rolling bearing was presented based on the improved reduction method. It is suited to information fusion to combine information when oil analysis and vibration analysis are combined for fault diagnosis.展开更多
To investigate the judging problem of optimal dividing matrix among several fuzzy dividing matrices in fuzzy dividing space, correspondingly, which is determined by the various choices of cluster samples in the totali...To investigate the judging problem of optimal dividing matrix among several fuzzy dividing matrices in fuzzy dividing space, correspondingly, which is determined by the various choices of cluster samples in the totality sample space, two algorithms are proposed on the basis of the data analysis method in rough sets theory: information system discrete algorithm (algorithm 1) and samples representatives judging algorithm (algorithm 2). On the principle of the farthest distance, algorithm 1 transforms continuous data into discrete form which could be transacted by rough sets theory. Taking the approximate precision as a criterion, algorithm 2 chooses the sample space with a good representative. Hence, the clustering sample set in inducing and computing optimal dividing matrix can be achieved. Several theorems are proposed to provide strict theoretic foundations for the execution of the algorithm model. An applied example based on the new algorithm model is given, whose result verifies the feasibility of this new algorithm model.展开更多
Determining the correct threshold values for the probabilistic rough set approaches has been a heated issue among the community.Existing techniques offer no way in guaranteeing that the calculated values optimize the ...Determining the correct threshold values for the probabilistic rough set approaches has been a heated issue among the community.Existing techniques offer no way in guaranteeing that the calculated values optimize the classification ability of the decision rules derived from this configuration.This article will formulate a game theoretic approach to calculating these thresholds to ensure correct approximation region size.Using payoff tables created from approximation measures and modified conditional risk strategies,we provide the user with tolerance levels for their loss functions.Using the tolerance values,new thresholds are calculated to provide correct classification regions.This will aid in determining a set of optimal region threshold values for decision making.展开更多
In our study, the Dominance-based Rough Set Approach (DRSA) has been proposed to assist the Board of Directors of the Community Futures Development Corporations (CFDC), the sub-region of Abitibi-West (Quebec). The CFD...In our study, the Dominance-based Rough Set Approach (DRSA) has been proposed to assist the Board of Directors of the Community Futures Development Corporations (CFDC), the sub-region of Abitibi-West (Quebec). The CFDC needs a tool for decision support to select the projects that are proposed by the contractors and partners of its territory. In decision making, a balanced set of 22 indicators is considered. These indicators derive from five perspectives: economic, social, demographic, health and wellness. The DRSA proposal is suitable for the data processing with multiple indicators providing on many examples to infer decision rules related to the preference model. In this paper we show that decision rules developed with the use of rough set theory allow us to simplify the process of selecting a portfolio for sustainable development by reducing a number of redundant indicators and identifying the critical values of selected indicators.展开更多
Rough set theory is relativly new to area of soft computing to handle the uncertain big data efficiently. It also provides a powerful way to calculate the importance degree of vague and uncertain big data to help in d...Rough set theory is relativly new to area of soft computing to handle the uncertain big data efficiently. It also provides a powerful way to calculate the importance degree of vague and uncertain big data to help in decision making. Risk assessment is very important for safe and reliable investment. Risk management involves assessing the risk sources and designing strategies and procedures to mitigate those risks to an acceptable level. In this paper, we emphasize on classification of different types of risk factors and find a simple and effective way to calculate the risk exposure.. The study uses rough set method to classify and judge the safety attributes related to investment policy. The method which based on intelligent knowledge accusation provides an innovative way for risk analysis. From this approach, we are able to calculate the significance of each factor and relative risk exposure based on the original data without assigning the weight subjectively.展开更多
Springback of sheet metal induced by elastic recovery is one of major defects in sheet metal forming processed. Springback is influenced by many factors including properties of the sheet material and processing condit...Springback of sheet metal induced by elastic recovery is one of major defects in sheet metal forming processed. Springback is influenced by many factors including properties of the sheet material and processing conditions. In this paper, a springback simulation was conducted and comparisons between the results based on different processing variables were illustrated. The discovery of knowledge of the effects of geometry and process parameters on springback from FEM results becomes increasingly important, as the number of numerical simulation has grown exponentially. Data mining is an effective tool to realize knowledge discovery in simulation results. A data-mining algorithm, rough sets theory (RST), was applied to analyze the effects of process parameters on springback in U-bending.展开更多
Feature selection and sentiment analysis are two common studies that are currently being conducted;consistent with the advancements in computing and growing the use of social media.High dimensional or large feature se...Feature selection and sentiment analysis are two common studies that are currently being conducted;consistent with the advancements in computing and growing the use of social media.High dimensional or large feature sets is a key issue in sentiment analysis as it can decrease the accuracy of sentiment classification and make it difficult to obtain the optimal subset of the features.Furthermore,most reviews from social media carry a lot of noise and irrelevant information.Therefore,this study proposes a new text-feature selection method that uses a combination of rough set theory(RST)and teaching-learning based optimization(TLBO),which is known as RSTLBO.The framework to develop the proposed RSTLBO includes numerous stages:(1)acquiring the standard datasets(user reviews of six major U.S.airlines)which are used to validate search result feature selection methods,(2)preprocessing of the dataset using text processing methods.This involves applying text processing methods from natural language processing techniques,combined with linguistic processing techniques to produce high classification results,(3)employing the RSTLBO method,and(4)using the selected features from the previous process for sentiment classification using the Support Vector Machine(SVM)technique.Results show an improvement in sentiment analysis when combining natural language processing with linguistic processing for text processing.More importantly,the proposed RSTLBO feature selection algorithm is able to produce an improved sentiment analysis.展开更多
An increase in extreme precipitation events due to future climate change will have a decisive influence on the formation of debris flows in earthquake-stricken areas. This paper aimed to describe the possible impacts ...An increase in extreme precipitation events due to future climate change will have a decisive influence on the formation of debris flows in earthquake-stricken areas. This paper aimed to describe the possible impacts of future climate change on debris flow hazards in the Upper Minjiang River basin in Northwest Sichuan of China, which was severely affected by the 2008 Wenchuan earthquake. The study area was divided into 1285 catchments, which were used as the basic assessment units for debris flow hazards. Based on the current understanding of the causes of debris flows, a binary logistic regression model was used to screen key factors based on local geologic, geomorphologic, soil,vegetation, and meteorological and climatic conditions. We used the weighted summation method to obtain a composite index for debris flow hazards, based on two weight allocation methods: Relative Degree Analysis and rough set theory. Our results showed that the assessment model using the rough set theory resulted in better accuracy. According to the bias corrected and downscaled daily climate model data, future annual precipitation(2030-2059) in the study area are expected to decrease, with an increasing number of heavy rainfall events. Under future climate change, areas with a high-level of debris flow hazard will be even more dangerous, and 5.9% more of the study area was categorized as having a high-level hazard. Future climate change will cause an increase in debris flow hazard levels for 128 catchments, accounting for 10.5% of the total area. In the coming few decades, attention should be paid not only to traditional areas with high-level of debris flow hazards, but also to those areas with an increased hazard level to improve their resilience to debris flow disasters.展开更多
Company experts and academicianshave paid significant attention to issues of new product/service development. However, few studies have been carried outtodiscuss innovative product/service development mindful of the c...Company experts and academicianshave paid significant attention to issues of new product/service development. However, few studies have been carried outtodiscuss innovative product/service development mindful of the competitive positions between competitors. This study introduces a hybrid method of positioning analysis, conjoint analysis and rough set theory to understand the competition positions and facilitate innovative product/service development from the customers’ perspective. The hybrid method is also supported by in-depth interviewing, factor analysis, preference regression, ideas simulation, ideas selection, and specific weight valuation methods. We choose the automobile maintenance industry in Taiwan, whose objective is to improve product/service qualities and enhance customers’ satisfaction and loyalty.This is also the subject of our empirical study. The results show that the proposed hybrid method is effective for innovative product/service development. Moreover, the empirical findings provide useful information for automobile maintenance providers so that they may be better able to pay attention to their competitive positions and their customers’ preferences, and better able to facilitate their innovative automobile maintenance service development, in order to achieve sustainable competitive advantages.展开更多
In order to meet the requirement of network synthesis optimization design for a micro component, a three-level information frame and functional module based on web was proposed. Firstly, the finite element method (FE...In order to meet the requirement of network synthesis optimization design for a micro component, a three-level information frame and functional module based on web was proposed. Firstly, the finite element method (FEM) was used to analyze the dynamic property of coupled-energy-domain of virtual prototype instances and to obtain some optimal information data. Secondly, the rough set theory (RST) and the genetic algorithm (GA) were used to work out the reduction of attributes and the acquisition of principle of optimality and to confirm key variable and restriction condition in the synthesis optimization design. Finally, the regression analysis (RA) and GA were used to establish the synthesis optimization design model and carry on the optimization design. A corresponding prototype system was also developed and the synthesis optimization design of a thermal actuated micro-pump was carded out as a demonstration in this paper.展开更多
文摘The improved method has been presented for knowledge reduction in rough sets (R-S) theory, when R-S is used to model the information expression of oil and vibration diagnosis. Therefore, the typical fault simulation tests of rolling bearings have been made, and the application method of R-S has been also analysed in this paper. The diagnosis model of holding rack fault in rolling bearing was presented based on the improved reduction method. It is suited to information fusion to combine information when oil analysis and vibration analysis are combined for fault diagnosis.
文摘To investigate the judging problem of optimal dividing matrix among several fuzzy dividing matrices in fuzzy dividing space, correspondingly, which is determined by the various choices of cluster samples in the totality sample space, two algorithms are proposed on the basis of the data analysis method in rough sets theory: information system discrete algorithm (algorithm 1) and samples representatives judging algorithm (algorithm 2). On the principle of the farthest distance, algorithm 1 transforms continuous data into discrete form which could be transacted by rough sets theory. Taking the approximate precision as a criterion, algorithm 2 chooses the sample space with a good representative. Hence, the clustering sample set in inducing and computing optimal dividing matrix can be achieved. Several theorems are proposed to provide strict theoretic foundations for the execution of the algorithm model. An applied example based on the new algorithm model is given, whose result verifies the feasibility of this new algorithm model.
文摘Determining the correct threshold values for the probabilistic rough set approaches has been a heated issue among the community.Existing techniques offer no way in guaranteeing that the calculated values optimize the classification ability of the decision rules derived from this configuration.This article will formulate a game theoretic approach to calculating these thresholds to ensure correct approximation region size.Using payoff tables created from approximation measures and modified conditional risk strategies,we provide the user with tolerance levels for their loss functions.Using the tolerance values,new thresholds are calculated to provide correct classification regions.This will aid in determining a set of optimal region threshold values for decision making.
文摘In our study, the Dominance-based Rough Set Approach (DRSA) has been proposed to assist the Board of Directors of the Community Futures Development Corporations (CFDC), the sub-region of Abitibi-West (Quebec). The CFDC needs a tool for decision support to select the projects that are proposed by the contractors and partners of its territory. In decision making, a balanced set of 22 indicators is considered. These indicators derive from five perspectives: economic, social, demographic, health and wellness. The DRSA proposal is suitable for the data processing with multiple indicators providing on many examples to infer decision rules related to the preference model. In this paper we show that decision rules developed with the use of rough set theory allow us to simplify the process of selecting a portfolio for sustainable development by reducing a number of redundant indicators and identifying the critical values of selected indicators.
文摘Rough set theory is relativly new to area of soft computing to handle the uncertain big data efficiently. It also provides a powerful way to calculate the importance degree of vague and uncertain big data to help in decision making. Risk assessment is very important for safe and reliable investment. Risk management involves assessing the risk sources and designing strategies and procedures to mitigate those risks to an acceptable level. In this paper, we emphasize on classification of different types of risk factors and find a simple and effective way to calculate the risk exposure.. The study uses rough set method to classify and judge the safety attributes related to investment policy. The method which based on intelligent knowledge accusation provides an innovative way for risk analysis. From this approach, we are able to calculate the significance of each factor and relative risk exposure based on the original data without assigning the weight subjectively.
基金the Shanghai Post-Phosphor Plan ( No.0 1QMH14 11)
文摘Springback of sheet metal induced by elastic recovery is one of major defects in sheet metal forming processed. Springback is influenced by many factors including properties of the sheet material and processing conditions. In this paper, a springback simulation was conducted and comparisons between the results based on different processing variables were illustrated. The discovery of knowledge of the effects of geometry and process parameters on springback from FEM results becomes increasingly important, as the number of numerical simulation has grown exponentially. Data mining is an effective tool to realize knowledge discovery in simulation results. A data-mining algorithm, rough sets theory (RST), was applied to analyze the effects of process parameters on springback in U-bending.
基金This publication was supported by the Universiti Kebangsaan Malaysia(UKM)under the Research University Grant(Project Code:DIP-2016-024).
文摘Feature selection and sentiment analysis are two common studies that are currently being conducted;consistent with the advancements in computing and growing the use of social media.High dimensional or large feature sets is a key issue in sentiment analysis as it can decrease the accuracy of sentiment classification and make it difficult to obtain the optimal subset of the features.Furthermore,most reviews from social media carry a lot of noise and irrelevant information.Therefore,this study proposes a new text-feature selection method that uses a combination of rough set theory(RST)and teaching-learning based optimization(TLBO),which is known as RSTLBO.The framework to develop the proposed RSTLBO includes numerous stages:(1)acquiring the standard datasets(user reviews of six major U.S.airlines)which are used to validate search result feature selection methods,(2)preprocessing of the dataset using text processing methods.This involves applying text processing methods from natural language processing techniques,combined with linguistic processing techniques to produce high classification results,(3)employing the RSTLBO method,and(4)using the selected features from the previous process for sentiment classification using the Support Vector Machine(SVM)technique.Results show an improvement in sentiment analysis when combining natural language processing with linguistic processing for text processing.More importantly,the proposed RSTLBO feature selection algorithm is able to produce an improved sentiment analysis.
基金jointly funded by the 135 Strategic Program of the Institute of Mountain Hazards and Environment,CAS(Grant No.SDS135-1703)the National Key Basic Research Program of China(973 program)(Grant No.2015CB452702)
文摘An increase in extreme precipitation events due to future climate change will have a decisive influence on the formation of debris flows in earthquake-stricken areas. This paper aimed to describe the possible impacts of future climate change on debris flow hazards in the Upper Minjiang River basin in Northwest Sichuan of China, which was severely affected by the 2008 Wenchuan earthquake. The study area was divided into 1285 catchments, which were used as the basic assessment units for debris flow hazards. Based on the current understanding of the causes of debris flows, a binary logistic regression model was used to screen key factors based on local geologic, geomorphologic, soil,vegetation, and meteorological and climatic conditions. We used the weighted summation method to obtain a composite index for debris flow hazards, based on two weight allocation methods: Relative Degree Analysis and rough set theory. Our results showed that the assessment model using the rough set theory resulted in better accuracy. According to the bias corrected and downscaled daily climate model data, future annual precipitation(2030-2059) in the study area are expected to decrease, with an increasing number of heavy rainfall events. Under future climate change, areas with a high-level of debris flow hazard will be even more dangerous, and 5.9% more of the study area was categorized as having a high-level hazard. Future climate change will cause an increase in debris flow hazard levels for 128 catchments, accounting for 10.5% of the total area. In the coming few decades, attention should be paid not only to traditional areas with high-level of debris flow hazards, but also to those areas with an increased hazard level to improve their resilience to debris flow disasters.
文摘Company experts and academicianshave paid significant attention to issues of new product/service development. However, few studies have been carried outtodiscuss innovative product/service development mindful of the competitive positions between competitors. This study introduces a hybrid method of positioning analysis, conjoint analysis and rough set theory to understand the competition positions and facilitate innovative product/service development from the customers’ perspective. The hybrid method is also supported by in-depth interviewing, factor analysis, preference regression, ideas simulation, ideas selection, and specific weight valuation methods. We choose the automobile maintenance industry in Taiwan, whose objective is to improve product/service qualities and enhance customers’ satisfaction and loyalty.This is also the subject of our empirical study. The results show that the proposed hybrid method is effective for innovative product/service development. Moreover, the empirical findings provide useful information for automobile maintenance providers so that they may be better able to pay attention to their competitive positions and their customers’ preferences, and better able to facilitate their innovative automobile maintenance service development, in order to achieve sustainable competitive advantages.
基金Projects 50375118,5014006 supported by the National Natural Science Foundation of China
文摘In order to meet the requirement of network synthesis optimization design for a micro component, a three-level information frame and functional module based on web was proposed. Firstly, the finite element method (FEM) was used to analyze the dynamic property of coupled-energy-domain of virtual prototype instances and to obtain some optimal information data. Secondly, the rough set theory (RST) and the genetic algorithm (GA) were used to work out the reduction of attributes and the acquisition of principle of optimality and to confirm key variable and restriction condition in the synthesis optimization design. Finally, the regression analysis (RA) and GA were used to establish the synthesis optimization design model and carry on the optimization design. A corresponding prototype system was also developed and the synthesis optimization design of a thermal actuated micro-pump was carded out as a demonstration in this paper.