期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Surface depletion field in 2D perovskite microplates: Structural phase transition, quantum confinement and Stark effect 被引量:2
1
作者 Wancai Li Chen Fang +6 位作者 Haizhen Wang Shuai Wang Junze Li Jiaqi Ma Jun Wang Hongmei Luo Dehui Li 《Nano Research》 SCIE EI CAS CSCD 2019年第11期2858-2865,共8页
Surface depletion field would introduce the depletion region near surface and thus could significantly alter the optical,electronic and optoelectronic properties of the materials,especially low-dimensional materials.T... Surface depletion field would introduce the depletion region near surface and thus could significantly alter the optical,electronic and optoelectronic properties of the materials,especially low-dimensional materials.Two-dimensional(2D)organic—inorganic hybrid perovskites with van der Waals bonds in the out-of-plane direction are expected to have less influence from the surface depletion field;nevertheless,studies on this remain elusive.Here we report on how the surface depletion field affects the structural phase transition,quantum confinement and Stark effect in 2D(BA)2PbI4 perovskite microplates by the thickness-,temperature-and power-dependent photoluminescence(PL)spectroscopy.Power dependent PL studies suggest that high-temperature phase(HTP)and low-temperature phase(LTP)can coexist in a wider temperature range depending on the thickness of the 2D perovskite microplates.With the decrease of the microplate thickness,the structural phase transition temperature first gradually decreases and then increases below 25 nm,in striking contrast to the conventional size dependent structural phase transition.Based on the thickness evolution of the emission peaks for both high-temperature phase and low-temperature phase,the anomalous size dependent phase transition could probably be ascribed to the surface depletion field and the surface energy difference between polymorphs.This explanation was further supported by the temperature dependent PL studies of the suspended microplates and encapsulated microplates with graphene and boron nitride flakes.Along with the thickness dependent phase transition,the emission energies of free excitons for both HTP and LTP with thickness can be ascribed to the surface depletion induced confinement and Stark effect. 展开更多
关键词 two-dimensional(2D)perovskite thickness surface depletion field structural phase transition quantum confinement Stark effect
原文传递
Numerical investigation of CO2 storage in hydrocarbon field using a geomechanical-fluid coupling model 被引量:4
2
作者 Guang Li 《Petroleum》 2016年第3期252-257,共6页
Increasing pore pressure due to CO2 injection can lead to stress and strain changes of the reservoir.One of the safely standards for long term CO2 storage is whether stress and strain changes caused by CO2 injection w... Increasing pore pressure due to CO2 injection can lead to stress and strain changes of the reservoir.One of the safely standards for long term CO2 storage is whether stress and strain changes caused by CO2 injection will lead to irreversible mechanical damages of the reservoir and impact the integrity of caprock which could lead to CO2 leakage through previously sealing structures.Leakage from storage will compromise both the storage capacity and the perceived security of the project,therefore,a successful CO2 storage project requires large volumes of CO2 to be injected into storage site in a reliable and secure manner.Yougou hydrocarbon field located in Orods basin was chosen as storage site based on it's stable geological structure and low leakage risks.In this paper,we present a fluid pressure and stress-strain variations analysis for CO2 geological storage based on a geomechanical-fluid coupling model.Using nonlinear elasticity theory to describe the geomechanical part of the model,while using the Darcy's law to describe the fluid flow.Two parts are coupled together using the poroelasticity theory.The objectives of our work were:1)evaluation of the geomechanical response of the reservoir to different CO2 injection scenarios.2)assessment of the potential leakage risk of the reservoir caused by CO2 injection. 展开更多
关键词 CO2 geological storage depleted oil field Numerical modeling GEOMECHANICS Geomechanical-fluid coupling model
原文传递
Giant enhancement of photoluminescence quantum yield in 2D perovskite thin microplates by graphene encapsulation 被引量:3
3
作者 Wancai Li Jiaqi Ma +1 位作者 Xue Cheng Dehui Li 《Nano Research》 SCIE EI CAS CSCD 2021年第6期1980-1984,共5页
The optoelectronic performances of the layered materials are strongly dependent on the thickness of the samples due to the surface effect.As the size of the samples decreases to few nanometers,the surface depletion fi... The optoelectronic performances of the layered materials are strongly dependent on the thickness of the samples due to the surface effect.As the size of the samples decreases to few nanometers,the surface depletion field and surface defect density are prominent arising from the large surface to volume ratio.For instance,thin two-dimensional(2D)organic-inorganic hybrid perovskite microplates usually exhibit a rather low photoluminescence quantum yield(PLQY),owning to the strong surface effect.Here,we report that the PLQY can be enhanced as large as 28 times in(iso-BA)2Pbl4(BA=C4H9NH3)2D perovskite thin microplates encapsulated by graphene,resulting in that the PLQY is more than 18%for the microplate with a thickness of 6.7 nm at 78 K.As the thickness of the 2D perovskite microplate increases,the enhancement is gradually reduced and finally vanishes.This observation is in striking contrast to that in monolayer transition metal dichalcogenides(TMDs),when the PLQY is quenched by covering a layer of graphene due to the efficient charge transfer.The enhancement of PLQY in 2D perovskites can be mainly ascribed to the reduced quantum confined Stark effect(QCSE)due to the reduced surface depletion field after covering graphene flake,resulting in the enhanced radiative recombination efficiency.Our findings provide a cost-effective approach to enhance the luminescence,which may pave the way toward high performance light emitting devices based on 2D perovskites. 展开更多
关键词 two-dimensional perovskite PHOTOLUMINESCENCE quantum yield quantum confinement surface depletion field
原文传递
Sub-diffraction-limit cell imaging using a super-resolution microscope with simplified pulse synchronization 被引量:2
4
作者 Zhaoshuai Gao Suhui Deng +4 位作者 Jiang Li Kun Wang Jiajun Li Lihua Wang Chunhai Fan 《Science China Chemistry》 SCIE EI CAS CSCD 2017年第10期1305-1309,共5页
Stimulated emission depletion(STED) microscope is one of the most prominent super-resolution bio-imaging instruments, which holds great promise for ultrahigh-resolution imaging of cells. To construct a STED microscope... Stimulated emission depletion(STED) microscope is one of the most prominent super-resolution bio-imaging instruments, which holds great promise for ultrahigh-resolution imaging of cells. To construct a STED microscope, it is challenging to realize temporal synchronization between the excitation pulses and the depletion pulses. In this study, we present a simple and low-cost method to achieve pulse synchronization by using a condensed fluorescent dye as a depletion indicator. By using this method, almost all the confocal microscopes can be upgraded to a STED system without losing its original functions. After the pulse synchronization,our STED system achieved sub-100-nm resolution for fluorescent nanospheres and single-cell imaging. 展开更多
关键词 fluorescence microscope far field super-resolution stimulated emission depletion(STED) microscope pulse synchronization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部