Many attentions for structural synthesis are paid to planar linkages and parallel mechanisms, while design novel pyramid deployable truss structure(PDTS) of satellite SAR mainly depends on experience of designer. To...Many attentions for structural synthesis are paid to planar linkages and parallel mechanisms, while design novel pyramid deployable truss structure(PDTS) of satellite SAR mainly depends on experience of designer. To design novel configuration of PDTS, a two-step topology structure synthesis and analysis approach is proposed. Firstly, a conceptual configuration of PDTS is synthesized. Weighted graph and weighted adjacency matrix are established to realize topological description for PDTS. Graph properties are then summarized to distinguish differentia between PDTS and other type structures. According to graph properties, a procedure for synthesis conceptual configuration of PDTS is presented. Secondly, join relationship of components in a PDTS is analyzed. Kinematic chain and corresponding incidence/adjacency matrix are employed to analyze join relationship of PDTS. Properties and simplified rules of kinematic chain are extracted to construct kinematic chain. A procedure for construction kinematic chain of PDTS is then established. Finally, with this two-step approach all 11 rectangular pyramid deployable structures whose folded state is planar are discovered and their kinematic chains are constructed. Based on synthesis results, a novel deployable support structure for satellite SAR is designed. The proposed research can be applied to obtain some novel PDTSs, which is of great importance to design some novel deployable support structures for satellite SAR antenna.展开更多
Joints are necessary components in the larger space deployable truss structures which have significant effect on the dynamics behavior of these deployable joint-dominated structures. Four kinds of joints' nonlinea...Joints are necessary components in the larger space deployable truss structures which have significant effect on the dynamics behavior of these deployable joint-dominated structures. Four kinds of joints' nonlinear force-displacement relationship are analyzed based on describing function method. The dynamic responses of one-DOF jointed system under different exciting force levels are investigated to understand the influence of joint nonlinearity on dynamic responses. The influences of joint characterizing parameters on joint nonlinearities are analyzed. Dynamic responses of the modular beam-like deployable joint-dominated truss structure are tested under different sinusoidal exciting force levels. The experimental results show obvious nonlinear behaviors contributed by joints that dynamic response shifts to lower resonance frequency and higher amplitude with the increase of exciting force. The nonlinearity of the joints in the tested structure is compared with the theoretical results and identified to meet with the hysteresis nonlinearity.展开更多
A method based on the metamorphic principle is proposed for the analysis of the configuration design of a space truss deployable mechanism. The configuration change and correspondent topological graphs and adjacency m...A method based on the metamorphic principle is proposed for the analysis of the configuration design of a space truss deployable mechanism. The configuration change and correspondent topological graphs and adjacency matrixes at different work-stage of the mechanism, which is helpful to completely understand the composition and change rules of the metamorphic mechanism, are analyzed to indicate the metamorphic relationship in one working cycle. Furthermore, the static distance matrix, dynamic distance matrix and stiffness matrix of the mechanism are derived to assess the ability of the designed configuration to reveal some of the topological characteristics like compactness, dynamic sensitivity and stiffness. Using this proposed method in a space truss deployable mechanism helps the designer to evaluate its performance at the conceptual stage of design and make a rapid, reasonable selection for configuration design, which provides means for processing its type of analysis by computer.展开更多
A new method was proposed for quasi-static deployment analysis of deployable space truss structures. The structure is assumed a rigid assembly, whose constraints are classified as three categories:rigid member constra...A new method was proposed for quasi-static deployment analysis of deployable space truss structures. The structure is assumed a rigid assembly, whose constraints are classified as three categories:rigid member constraint, joint-attached kinematic constraint and boundary constraint. And their geometric constraint equations and derivative matrices are formulated. The basis of the null space and M-P inverse of the geometric constraint matrix are employed to determine the solution for quasi-static deployment analysis. The influence introduced by higher terms of constraints is evaluated subsequently. The numerical tests show that the new method is efficient.展开更多
Space deployable structures with large calibers, high accuracy, and large folding ratios are indispensable equipment in the aerospace field. Given that the single-DOF 3 RR-3 RRR deployable unit cannot be fully folded,...Space deployable structures with large calibers, high accuracy, and large folding ratios are indispensable equipment in the aerospace field. Given that the single-DOF 3 RR-3 RRR deployable unit cannot be fully folded, this study proposes a 3 UU-3 URU deployable unit with two kinds of DOF: folding movement and orientation adjustment. First, based on the G-K formula, the DOF of the 3 UU-3 URU unit is analyzed. Then, the 3 UU-3 URU unit is used to construct a deployable truss antenna with a curved surface, and the DOF of the whole deployable antenna containing multiple 3 UU-3 URU units is calculated. The structural design of a deployable antenna with two loops is carried out with specific parameters and geometric relations. Next, a DOF simulation of a basic combination unit composed of three 3 UU-3 URU units is performed. Finally, a prototype of the basic combination unit is manufactured, and the DOF of the mechanism is experimentally verified.展开更多
As the deployment,supporting,and stability mechanisms of satellite antennas,space-deployable mechanisms play a key role in the field of aerospace.In order to design truss deployable antenna supporting mechanisms with ...As the deployment,supporting,and stability mechanisms of satellite antennas,space-deployable mechanisms play a key role in the field of aerospace.In order to design truss deployable antenna supporting mechanisms with large folding rate,high accuracy,easy deployment and strong stability,aiming at the geometric division of the parabolic reflector,a novel method based on symmetric hexagonal division and its corresponding modular truss deployable antenna mechanism is proposed,and the original method based on asymmetric triangular division and its corresponding mechanisms are presented for comparative analysis.Then,the screw theory is employed to analyze the mobility of different mechanisms.Furthermore,the improved three-dimensional mesh method is used to divide the reflector surface of a large parabolic antenna designed by the two different methods,and the profile accuracy and the type of links are taken as the evaluation indexes to quantitatively analyze the division results.Finally,a three-dimensional model of the modular deployable mechanism based on the symmetric hexagonal design is developed,and the deployable mechanisms with different configurations based on the two design methods are compared and analyzed from the mechanical perspective.The research results provide a good theoretical reference for the design of deployable truss antenna mechanisms and their application in the aerospace field.展开更多
基金Supported by the College Discipline Innovation Wisdom Plan in China(Grant No.B07018)National Natural Science Foundation of China(Grant Nos.50935002,11002039)
文摘Many attentions for structural synthesis are paid to planar linkages and parallel mechanisms, while design novel pyramid deployable truss structure(PDTS) of satellite SAR mainly depends on experience of designer. To design novel configuration of PDTS, a two-step topology structure synthesis and analysis approach is proposed. Firstly, a conceptual configuration of PDTS is synthesized. Weighted graph and weighted adjacency matrix are established to realize topological description for PDTS. Graph properties are then summarized to distinguish differentia between PDTS and other type structures. According to graph properties, a procedure for synthesis conceptual configuration of PDTS is presented. Secondly, join relationship of components in a PDTS is analyzed. Kinematic chain and corresponding incidence/adjacency matrix are employed to analyze join relationship of PDTS. Properties and simplified rules of kinematic chain are extracted to construct kinematic chain. A procedure for construction kinematic chain of PDTS is then established. Finally, with this two-step approach all 11 rectangular pyramid deployable structures whose folded state is planar are discovered and their kinematic chains are constructed. Based on synthesis results, a novel deployable support structure for satellite SAR is designed. The proposed research can be applied to obtain some novel PDTSs, which is of great importance to design some novel deployable support structures for satellite SAR antenna.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50935002 and 11002039)Key Laboratory Opening Funding of Aerospace Mechanism and Control Technology(Grant No.HIT.KLOF.2009062)"111 Project"(Grant No.B07018)
文摘Joints are necessary components in the larger space deployable truss structures which have significant effect on the dynamics behavior of these deployable joint-dominated structures. Four kinds of joints' nonlinear force-displacement relationship are analyzed based on describing function method. The dynamic responses of one-DOF jointed system under different exciting force levels are investigated to understand the influence of joint nonlinearity on dynamic responses. The influences of joint characterizing parameters on joint nonlinearities are analyzed. Dynamic responses of the modular beam-like deployable joint-dominated truss structure are tested under different sinusoidal exciting force levels. The experimental results show obvious nonlinear behaviors contributed by joints that dynamic response shifts to lower resonance frequency and higher amplitude with the increase of exciting force. The nonlinearity of the joints in the tested structure is compared with the theoretical results and identified to meet with the hysteresis nonlinearity.
基金supported by the Science and Technology Commission of Shanghai Municipality under Grant No. 06dz22105
文摘A method based on the metamorphic principle is proposed for the analysis of the configuration design of a space truss deployable mechanism. The configuration change and correspondent topological graphs and adjacency matrixes at different work-stage of the mechanism, which is helpful to completely understand the composition and change rules of the metamorphic mechanism, are analyzed to indicate the metamorphic relationship in one working cycle. Furthermore, the static distance matrix, dynamic distance matrix and stiffness matrix of the mechanism are derived to assess the ability of the designed configuration to reveal some of the topological characteristics like compactness, dynamic sensitivity and stiffness. Using this proposed method in a space truss deployable mechanism helps the designer to evaluate its performance at the conceptual stage of design and make a rapid, reasonable selection for configuration design, which provides means for processing its type of analysis by computer.
基金National Natural Science Foundation ofChina(No.10 10 2 0 10 )
文摘A new method was proposed for quasi-static deployment analysis of deployable space truss structures. The structure is assumed a rigid assembly, whose constraints are classified as three categories:rigid member constraint, joint-attached kinematic constraint and boundary constraint. And their geometric constraint equations and derivative matrices are formulated. The basis of the null space and M-P inverse of the geometric constraint matrix are employed to determine the solution for quasi-static deployment analysis. The influence introduced by higher terms of constraints is evaluated subsequently. The numerical tests show that the new method is efficient.
基金co-supported by the National Natural Science Foundation of China (No. 51675458)the Key Project of Natural Science Foundation of Hebei Province of China (No. E2017203335)the Youth Top Talent Project of Hebei Province Higher Education of China (No. BJ2017060)
文摘Space deployable structures with large calibers, high accuracy, and large folding ratios are indispensable equipment in the aerospace field. Given that the single-DOF 3 RR-3 RRR deployable unit cannot be fully folded, this study proposes a 3 UU-3 URU deployable unit with two kinds of DOF: folding movement and orientation adjustment. First, based on the G-K formula, the DOF of the 3 UU-3 URU unit is analyzed. Then, the 3 UU-3 URU unit is used to construct a deployable truss antenna with a curved surface, and the DOF of the whole deployable antenna containing multiple 3 UU-3 URU units is calculated. The structural design of a deployable antenna with two loops is carried out with specific parameters and geometric relations. Next, a DOF simulation of a basic combination unit composed of three 3 UU-3 URU units is performed. Finally, a prototype of the basic combination unit is manufactured, and the DOF of the mechanism is experimentally verified.
基金co-supported by the National Natural Science Foundation of China(No.51675458)the Key Project of Natural Science Foundation of Hebei Province of China(No.E2017203335)the Postgraduate Innovation Subsidy Project of Hebei Province of China(No.CXZZBS2019050)。
文摘As the deployment,supporting,and stability mechanisms of satellite antennas,space-deployable mechanisms play a key role in the field of aerospace.In order to design truss deployable antenna supporting mechanisms with large folding rate,high accuracy,easy deployment and strong stability,aiming at the geometric division of the parabolic reflector,a novel method based on symmetric hexagonal division and its corresponding modular truss deployable antenna mechanism is proposed,and the original method based on asymmetric triangular division and its corresponding mechanisms are presented for comparative analysis.Then,the screw theory is employed to analyze the mobility of different mechanisms.Furthermore,the improved three-dimensional mesh method is used to divide the reflector surface of a large parabolic antenna designed by the two different methods,and the profile accuracy and the type of links are taken as the evaluation indexes to quantitatively analyze the division results.Finally,a three-dimensional model of the modular deployable mechanism based on the symmetric hexagonal design is developed,and the deployable mechanisms with different configurations based on the two design methods are compared and analyzed from the mechanical perspective.The research results provide a good theoretical reference for the design of deployable truss antenna mechanisms and their application in the aerospace field.