Rare metal ore reserves are an important strategic resource, and their metallogenic mechanism and mineralization studies have also been received widespread international attention.
1 Introduction Studies of marine sedimentary phosphate rock have lasted decades,scholars proposed some standpoints about mineralization,however,the genesis of mineral deposits remains to be a controversial question(Sh...1 Introduction Studies of marine sedimentary phosphate rock have lasted decades,scholars proposed some standpoints about mineralization,however,the genesis of mineral deposits remains to be a controversial question(She et al.,2013).There are many viewpoints of mineralization about the Doushantuo phosphorites,Central Guizhou,including biological mineralization(Mi et al.,2010;Shi et al.,2005),展开更多
Spinel exsolution is widespread in titanomagnetite from the Fe-Ti oxide gabbro of the Panzhihua intrusion, Emeishan Large Igneous Province, SW China. However, little research has been conducted into the implications o...Spinel exsolution is widespread in titanomagnetite from the Fe-Ti oxide gabbro of the Panzhihua intrusion, Emeishan Large Igneous Province, SW China. However, little research has been conducted into the implications of patterns in the mineralogical characteristics of the spinel for spatial variation in the controls on the exsolution mechanism and, hence, the formation process of the ore deposit. This study selected the Lanjiahuoshan Ore Block in the Panzhihua V-Ti magnetite deposit to explore this issue, systematically studying exsolution textures in the titanomagnetite through petrographic observation and the integrated use of in-situ microanalysis. The results show that the exsolved spinel gradually becomes finer-grained and less abundant from the center to edge and the bottom to top of the ore bodies. Compositionally, there is an inverse correlation between the size of exsolved spinel grains and their Mg# value. In addition, there is compositional zonation in the spinel interiors, with a gradual increase in the Mg content and decrease in Fe content from the core to the rim. The analysis suggests that fractional crystallization of ferrotitanium magma with a high oxygen fugacity in a shallow magma chamber caused compositional differences in the primary magnetite solid solution in different parts of the Panzhihua intrusion. Additionally, the thermal evolution of the magnetite solid solution differed in different parts of orebody, bringing about variations in spinel development. Together, these effects resulted in spatial variation in the abundance, grain size, and morphology of spinel in different parts of the orebody and intrusion that follows an identifiable distribution law. Furthermore, the compositional zonation of exsolved spinels reflects the rapid growth of exsolution features in a high-temperature environment. Thus, the size, morphology, abundance, and composition of spinel exsolution features in titanomagnetite provide a valuable petrogenetic tool for estimating the maturity and formational environment of the deposit.展开更多
The Dongping deposit is the largest alkalic-hosted gold deposit in China containing>100 t of Au.This paper presents a new understanding for Dongping ore system,based on the previous studies.The mineralization origi...The Dongping deposit is the largest alkalic-hosted gold deposit in China containing>100 t of Au.This paper presents a new understanding for Dongping ore system,based on the previous studies.The mineralization originally occurred at 400-380 Ma,simultaneous with emplacement of the Shuiquangou alkaline complex,and was overprinted by the hydrothermal activity in the Yanshanian.Isotope compositions of ores indicate metals of the deposit are mainly provided by the Shuiquangou complex.Ore-forming fluids are characterized by increasing oxygen fugacity and decreasing sulfur fugacity,while tellurium fugacity increased in the Stage II-2 and decreased in Stage II-3.These systematic changes are closely related to the processes of mineral precipitation and fluid evolution.Sulfide precipitation from Stage Ⅰ to Stage Ⅱ was triggered by fluid boiling,which leads to the precipitation of Pb-Bi-Te,due to decrement of sulfur fugacity.Condensation of gas phase containing high concentration of H_2Te leads to precipitation of Te-Au-Ag minerals and native tellurium.Based on these hypotheses,this paper present a polyphase metallogenic model as follow.During the Devonian,fluids were released from alkaline magmas,which carried ore-forming materials form the surrounding rocks and precipitate the early ores.During the Jurassic-Cretaceous,fluorine-rich fluids exsolved from highly factionated Shangshuiquan granite,which extracted and concentrated Au from the Shuiquangou complex and the Sanggan Group metamorphic rocks,and finally formed the Dongping gold deposit.展开更多
Sedimentary process research is of great significance for understanding the distribution and characteristics of sediments.Through the detailed observation and measurement of the Sangyuan outcrop in Luanping Basin,this...Sedimentary process research is of great significance for understanding the distribution and characteristics of sediments.Through the detailed observation and measurement of the Sangyuan outcrop in Luanping Basin,this paper studies the depositional process of the hyperpycnal flow deposits,and divides their depositional process into three phases,namely,acceleration,erosion and deceleration.In the acceleration phase,hyperpycnal flow begins to enter the basin nearby,and then speeds up gradually.Deposits developed in the acceleration phase are reverse.In addition,the original deposits become unstable and are taken away by hyperpycnal flows under the eroding force.As a result,there are a lot of mixture of red mud pebbles outside the basin and gray mud pebbles within the basin.In the erosion phase,the reverse deposits are eroded and become thinner or even disappear.Therefore,no reverse grading characteristic is found in the proximal major channel that is closer to the source,but it is still preserved in the middle branch channel that is far from the source.After entering the deceleration phase,normally grading deposits appear and cover previous deposits.The final deposits in the basin are special.Some are reverse,and others are normal.They are superimposed with each other under the action of hyperpycnal flow.The analysis of the Sangyuan outcrop demonstrates the sedimentary process and distribution of hyperpycnites,and reasonably explain the sedimentary characteristics of hyperpycnites.It is helpful to the prediction of oil and gas exploration targets in gravity flow deposits.展开更多
A reasonable classification of deposits holds great significance for identifying prospecting targets and deploying exploration. The world ’s keen demand for lithium resources has expedited the discovery of numerous n...A reasonable classification of deposits holds great significance for identifying prospecting targets and deploying exploration. The world ’s keen demand for lithium resources has expedited the discovery of numerous novel lithium resources. Given the presence of varied classification criteria for lithium resources presently, this study further ascertained and classified the lithium resources according to their occurrence modes, obtaining 10 types and 5 subtypes of lithium deposits(resources) based on endogenetic and exogenetic factors. As indicated by surveys of Cenozoic exogenetic lithium deposits in China and abroad,the formation and distribution of the deposits are primarily determined by plate collision zones, their primary material sources are linked to the anatectic magmas in the deep oceanic crust, and they were formed primarily during the Miocene and Late Paleogene. The researchers ascertained that these deposits,especially those of the salt lake, geothermal, and volcanic deposit types, are formed by unique slightly acidic magmas, tend to migrate and accumulate toward low-lying areas, and display supernormal enrichment. However, the material sources of lithium deposits(resources) of the Neopaleozoic clay subtype and the deep brine type are yet to be further identified. Given the various types and complex origins of lithium deposits(resources), which were formed due to the interactions of multiple spheres, it is recommended that the mineralization of exogenetic lithium deposits(resources) be investigated by integrating tectono-geochemistry, paleoatmospheric circulation, and salinology. So far, industrialized lithium extraction is primarily achieved in lithium deposits of the salt lake, clay, and hard rock types. The lithium extraction employs different processes, with lithium extraction from salt lake-type lithium deposits proving the most energy-saving and cost-effective.展开更多
The Yangla Cu skarn deposit is located in the central part of the Jinshajiang Suture Zone,southwest China,with a total reserve of 150 Mt Cu@1.03%.The newly discovered antimony orebodies at the depth of Yangla are stri...The Yangla Cu skarn deposit is located in the central part of the Jinshajiang Suture Zone,southwest China,with a total reserve of 150 Mt Cu@1.03%.The newly discovered antimony orebodies at the depth of Yangla are strictly controlled by the stratum,structure,and lithology,which are lenticular and vein-like within the marble fracture zone,which can provide a window into multistage miner-alization and ore genesis at Yangla.Mineralization can be divided into three types,Cu–Pb–Zn(skarn)pyrite,galena,and sphalerite,Cu(porphyry)chalcopyrite and pyrite,and Sb(hydrothermal)stibnite and pyrite.The mineral assem-blages were stibnite+pyrite+calcite+quartz±minor scheelite in antimony ores.This study presents quantitative measurements of the trace element compositions of pyrite and stibnite from the Yangla antimony ores.Analysis of pyrite with electron probe microanalysis(EPMA)showed enrichment in Co,Ni,Sb,As,and Mo,and deficit in its S and Fe contents when compared to the stoichiometric con-centrations of S and Fe in pyrite.The Sb-related pyrite may belong to sedimentary-reworked genesis and may be modi-fied by hydrothermalfluids,thereby presenting a certain dif-ference(i.e.,crystal morphology,texture,and chemical com-position)compared to the skarn and porphyry Cu-related pyrite in the Yangla Cu skarn deposit.Analysis of stibnite with EPMA and inductively coupled plasma-mass spectrom-etry showed enrichment in As,Pb,Sn,Pb,Cu,and Zn,and presented much higher Sb contents and slightly lower S con-tents when compared to the stoichiometric concentrations of Sb and S in stibnite.Statistical analysis of the stibnite trace elements showed correlations for the elemental pairs Cu–Pb,As–Sb,and Sn–Pb,and the coupled substitution equations Sb^(3+)↔Cu^(+)+Pb^(2+),Sb^(3+)↔As^(3+),and Sn^(2+)↔Pb^(2+)may be the major factors governed the incorporating Cu,Pb,As and Sn within the stibnite.Moreover,this study preliminary shows that the antimony mineralization may belong to a car-bonate replacement hydrothermal genesis at Yangla.展开更多
Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization.This approach provides key information for the quantitative prediction of deep mineral localization,three-di...Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization.This approach provides key information for the quantitative prediction of deep mineral localization,three-dimensional fine interpolation,analysis of spatial distribution patterns,and extraction of quantitative mineral-seeking markers.The Yechangping molybdenum(Mo)deposit is a significant and extensive porphyry-skarn deposit in the East Qinling-Dabie Mo polymetallic metallogenic belt at the southern margin of the North China Block.Abundant borehole data on oreforming elements underpin deep geochemical predictions.The methodology includes the following steps:(1)Threedimensional geological modeling of the deposit was established.(2)Correlation,cluster,and factor analyses post delineation of mineralization stages and determination of mineral generation sequence to identify(Cu,Pb,Zn,Ag)and(Mo,W,mfe)assemblages.(3)A three-dimensional geochemical block model was constructed for Mo,W,mfe,Cu,Zn,Pb,and Ag using the ordinary kriging method,and the variational function was developed.(4)Spatial distribution and enrichment characteristics analysis of ore-forming elements are performed to extract geological information,employing the variogram and w(Cu+Pb+Zn+Ag)/w(Mo+W)as predictive indicators.(5)Identifying the western,northwestern,and southwestern areas of the mine with limited mineralization potential,contrasted by the northeastern and southeastern areas favorable for mineral exploration.展开更多
The Wangjiazhuang Cu(-Mo)deposit,located within the Zouping volcanic basin in western Shandong Province,China,is unique in this area for having an economic value.In order to expound the metallogenetic characteristics ...The Wangjiazhuang Cu(-Mo)deposit,located within the Zouping volcanic basin in western Shandong Province,China,is unique in this area for having an economic value.In order to expound the metallogenetic characteristics of this porphyry-like hydrothermal deposit,a detailed fluid inclusion study has been conducted,employing the techniques of representative sampling,fluid inclusion petrography,microthermometry,Raman spectroscopy,LA-ICP-MS analysis of single fluid inclusions,as well as cathode fluorescence spectrometer analysis of host mineral quartz.The deposit contains mainly two types of orebodies,i.e.veinlet-dissemination-stockwork orebodies in the K-Si alteration zone and pegmatiticquartz sulfide veins above them.In addition,minor breccia ore occurs locally.Four types of fluid inclusions in the deposit and altered quartz monzonite are identified:L-type one-or two-phase aqueous inclusions,V-type vapor-rich inclusions with V/L ratios greater than 50%-90%,D-type multiphase fluid inclusions containing daughter minerals or solids and S-type silicate-bearing fluid inclusions containing mainly muscovite and biotite.Ore petrography and fluid inclusion study has revealed a three-stage mineralization process,driven by magmatic-hydrothermal fluid activity,as follows.Initially,a hydrothermal fluid,separated from the parent magma,infiltrated into the quartz monzonite,resulting in its extensive K-Si alteration,as indicated by silicate-bearing fluid inclusions trapped in altered quartz monzonite.This is followed by the early mineralization,the formation of quartz veinlets and dissemination-stockwork ores.During the main mineralization stage,due to the participation and mixing of meteoric groundwater with magmatic-sourced hydrothermal fluid,the cooling and phase separation caused deposition of metals from the hydrothermal fluids.As a result,the pegmatitic-quartz sulfide-vein ores formed.In the late mineralization stage,decreasing fluid salinity led to the formation of L-type aqueous inclusions and chalcopyrite-sulfosalt ore.Coexistence of V-type and D-type inclusions and their similar homogenization temperatures with different homogenization modes suggest that phase separation or boiling of the ore-forming fluids took place during the early and the main mineralization stages.The formation P-T conditions of S-type inclusions and the early and the main mineralization stages were estimated as ca.156-182 MPa and 450-650℃,350-450℃,18-35 MPa and 280-380℃,8-15 MPa,respectively,based on the microthermometric data of the fluid inclusions formed at the individual stages.展开更多
Porphyry Cu(Mo-Au)deposit is one of the most important types of copper deposit and usually formed under magmatic arc-related settings,whilst the Mujicun porphyry Cu-Mo deposit in North China Craton uncommonly generate...Porphyry Cu(Mo-Au)deposit is one of the most important types of copper deposit and usually formed under magmatic arc-related settings,whilst the Mujicun porphyry Cu-Mo deposit in North China Craton uncommonly generated within intra-continental settings.Although previous studies have focused on the age,origin and ore genesis of the Mujicun deposit,the ore-forming age,magma source and tectonic evolution remain controversial.Here,this study targeted rutile(TiO_(2))in the ore-hosting diorite porphyry from the Mujicun Cu-Mo deposit to conduct in situ U-Pb dating and trace element composition studies,with major views to determine the timing and magma evolution and to provide new insights into porphyry Cu-Mo metallogeny.Rutile trace element data show flat-like REE patterns characterized by relatively enrichment LREEs and depleted HREEs,which could be identified as magmatic rutile.Rutile U-Pb dating yields lower intercept ages of 139.3–138.4 Ma,interpreted as post magmatic cooling timing below about 500℃,which are consistent or slightly postdate with the published zircon U-Pb ages of diorite porphyry(144.1–141.7 Ma)and skarn(146.2 Ma;139.9 Ma)as well as the molybdenite Re-Os ages of molybdenum ores(144.8–140.0 Ma).Given that the overlap between the closure temperature of rutile U-Pb system and ore-forming temperature of the Mujicun deposit,this study suggests that the ore-forming ages of the Mujicun deposit can be constrained at 139.3–138.4 Ma,with temporal links to the late large-scale granitic magmatism at 138–126 Ma in the Taihang Orogen.Based on the Mg and Al contents in rutile,the magma of ore-hosting diorite porphyry was suggested to be derived from crust-mantle mixing components.In conjunction with previous studies in Taihang Orogen,this study proposes that the far-field effect and the rollback of the subducting Paleo-Pacific slab triggered lithospheric extension,asthenosphere upwelling,crust-mantle interaction and thermo-mechanical erosion,which jointly facilitated the formation of dioritic magmas during the Early Cretaceous.Subsequently,the dioritic magmas carrying crust-mantle mixing metallic materials were emplaced and precipitated at shallow positions along NNE-trending ore-controlling faults,eventually resulting in the formation of the Mujicun Cu-Mo deposit within an intracontinental extensional setting.展开更多
The Hongqiling large nickel-copper-cobalt deposit(hereafter referred to as the Hongqiling deposit),a typical mafic-ultramafic copper-nickel deposit in China,boasts proven Ni(Ni)resources of approximately 22×10^(4...The Hongqiling large nickel-copper-cobalt deposit(hereafter referred to as the Hongqiling deposit),a typical mafic-ultramafic copper-nickel deposit in China,boasts proven Ni(Ni)resources of approximately 22×10^(4)t,associated copper resources of 2×10^(4)t,and associated cobalt(Co)resources of 0.5×10^(4)t,with Ni reserves ranking 10th among China's magmatic nickel deposits.Geotectonically,the Hongqiling deposit is situated in the superimposed zone between the Xing'an-Mongolian orogenic belt and the circum-Western Pacific's active continental margin belt.Its ore-bearing plutons occur within the metamorphic rocks of the Ordovician Hulan Group,with the emplacement of plutons and the locations of orebodies governed by the deep-seated Huifahe fault and its secondary NW-trending Fujia-Hejiagou-Beixinglong-Changsheng fault zone.In the deposit,the rock assemblages of ore-bearing plutons predominantly encompass gabbro-pyroxenite-olivine pyroxenite-pyroxene peridotite(pluton No.1)and norite-orthopyroxenite-harzburgite(pluton No.7),with ore-bearing lithofacies consisting primarily of olivine pyroxenite and pyroxenite facies.The Hongqiling deposit hosts stratoid,overhanging lentoid,veined,and pure-sulfide veined orebodies.Its ores principally contain metallic minerals including pyrrhotite,pentlandite,chalcopyrite,violarite,and pyrite.Despite unidentified magma sources of ore-bearing mafic-ultramafic rocks,it is roughly accepted that the magmatic evolution in the Hongqiling deposit primarily involved fractional crystallization and crustal contamination.The ore-forming materials were primarily derived from the upper mantle,mixed with minor crustal materials.The ore-bearing mafic-ultramafic rocks in the deposit,primarily emplaced during the Indosinian(208-239 Ma),were formed in an intense extension setting followed by the collisional orogeny between the North China Plate and the Songnen-Zhangguangcai Range Block during the Middle-Late Triassic.From the perspective of the metallogenic geological setting,surrounding rocks,ore-controlling structures,and rock assemblages,this study identified one favorable condition and seven significant indicators for prospecting for Hongqiling-type nickel deposits and developed a prospecting model of the Hongqiling deposit.These serve as valuable references for exploring similar nickel deposits in the region,as well as the deep parts and margins of the Hongqiling deposit.展开更多
Mg-alloys have gained considerable attention in recent years for their outstanding properties such as lightweight,high specific strength,and corrosion resistance,making them attractive for applications in medical,aero...Mg-alloys have gained considerable attention in recent years for their outstanding properties such as lightweight,high specific strength,and corrosion resistance,making them attractive for applications in medical,aerospace,automotive,and other transport industries.However,their widespread application is hindered by their low formability at room temperature due to limited slip systems.Cast Mg-alloys have low mechanical properties due to the presence of casting defects such as porosity and anisotropy in addition to the high scrap.While casting methods benefit from established process optimization techniques for these problems,additive manufacturing methods are increasingly replacing casting methods in Mg alloys as they provide more precise control over the microstructure and allow specific grain orientations,potentially enabling easier optimization of anisotropy properties in certain applications.Although metal additive manufacturing(MAM)technology also results in some manufacturing defects such as inhomogeneous microstructural evolution and porosity and additively manufactured Mg alloy parts exhibit lower properties than the wrought parts,they in general exhibit superior properties than the cast counterparts.Thus,MAM is a promising technique to produce Mg alloy parts.Directed energy deposition processes,particularly wire arc directed energy deposition(WA-DED),have emerged as an advantageous additive manufacturing(AM)technique for metallic materials including magnesium alloys,offering advantages such as high deposition rates,improved material efficiency,and reduced production costs compared to subtractive processes.However,the inherent challenges associated with magnesium,such as its high reactivity and susceptibility to oxidation,pose unique hurdles in the application of this technology.This review paper delves into the progress made in the application of DED technology to Mg-alloys,its challenges,and prospects.Furthermore,the predominant imperfections,notably inhomogeneous microstructure evolution and porosity,observed in Mg-alloy components manufactured through DED are discussed.Additionally,the preventive measures implemented to counteract the formation of these defects are explored.展开更多
The Liwu stratiform copper deposit is located in the northwestern Jianglang dome,western China.Current studies mainly focus on the genetic type and mineralization of this deposit.Detailed fluid inclusion characteristi...The Liwu stratiform copper deposit is located in the northwestern Jianglang dome,western China.Current studies mainly focus on the genetic type and mineralization of this deposit.Detailed fluid inclusion characteristics of metallogenic period quartz veins were studied to reveal the ore-forming fluid features.Laser Raman analysis indicates that the ore-forming fluids is a H_(2)O-NaCl-CH_(4)(-CO_(2))system.Fluid inclusions microthermometry shows a homogenization temperature of 181-375°C and a salinity of 5.26%-16.99%for the disseminated-banded Cu-Zn mineralization;but a homogenization temperature of 142-343°C and a salinity of 5.41%-21.19%for the massive-veined Cu-Zn mineralization.These features suggest a medium-high temperature and a medium salinity for the ore-forming fluids.H-O isotopic data indicates that the ore-forming fluids were mainly from the metamorphic and magmatic water,plus minor formation water.And sulfur isotopic data indicates that sulfur was mainly derived from the formation and magmatic rocks.Metallogenesis of the disseminated-banded mineralization was mainly correlated with fluid mixing and water-rock reaction;whereas that of the massive-veined mineralization was mainly correlated with fluid boiling.The genetic type of the deposit is a medium-high temperature hydrothermal deposit related to magmatism and controlled by shear zones.This study is beneficial to understand the stratiform copper deposit.展开更多
The mineralization is related closely to sedimentation, diagenesis and hydrothermal processes. In this paper, investigations are carried out on coal occurrence, maceral composition, inorganic minerals, trace elements ...The mineralization is related closely to sedimentation, diagenesis and hydrothermal processes. In this paper, investigations are carried out on coal occurrence, maceral composition, inorganic minerals, trace elements and huminite reflectance. It is concluded that the source of Lincang superlarge deposit is mainly the muscovite granite in the west edge of the basin. During sedimentation, Ge (germanium) was leached out and entered the basin. Ge was adsorbed by lower organism and humic substances in water. Lincang lignite underwent three thermal processes: peatification, early diagenesis and hydrothermal transformation. During peatification, Ge was adsorbed or complexed by humic colloids. During early diagenesis, the Ge associated with humic acids was hard to mobilize or transport. Most of Ge entered the structure of huminite while a small amount of Ge was associated with residual humic acids as complex or humate. During hydrothermal transformation, the heated natural water or deep fluid from basement encountered the coal layer within tectonic weak zone. SO 2- 4 was reduced by coal organic matter. Pyrite and calcite formed. Hydrothermal process did not contribute significantly to mineralization.展开更多
The reserves of the Duobaoshan porphyry Cu-Au-Mo-Ag deposit(also referred to as the Duobaoshan porphyry Cu deposit)ranks first among the copper deposits in China and 33rd among the porphyry copper deposits in the worl...The reserves of the Duobaoshan porphyry Cu-Au-Mo-Ag deposit(also referred to as the Duobaoshan porphyry Cu deposit)ranks first among the copper deposits in China and 33rd among the porphyry copper deposits in the world.It has proven resources of copper(Cu),molybdenum(Mo),gold(Au),and silver(Ag)of 2.28×10^(6)t,80×10^(3)t,73 t,and 1046 t,respectively.The major characteristics of the Duobaoshan porphyry Cu deposit are as follows.It is located in a zone sandwiched by the Siberian,North China,and paleo-Pacific plates in an island arc tectonic setting and was formed by the Paleozoic mineralization and the Mesozoic mineralization induced by superposition and transformation.The metallogenic porphyries are the Middle Hercynian granodiorite porphyries.The alterations of surrounding rocks are distributed in a ring form.With silicified porphyries at the center,the alteration zones of K-feldspar,biotite,sericite,and propylite occur from inside to outside.This deposit is composed of 215 ore bodies(including 14 major ore bodies)in four mineralized zones.Ore body No.X in the No.3 mineralized zone has the largest resource reserves,accounting for more than 78%of the total reserves of the deposit.Major ore components include Cu,Mo,Au,Ag,Se,and Ga,which have an average content of 0.46%,0.015%,0.16 g/t,1.22 g/t,0.0003%,and 0.001%-0.003%,respectively.The ore minerals of this deposit primarily include pyrite,chalcopyrite,bornite,and molybdenite,followed by magnetite,hematite,rutile,gelenite,and sphalerite.The ore-forming fluids of this deposit were magmatic water in the early metallogenic stage and then the mixture of meteoric water and magmatic water at the late metallogenic stage.The ore-forming fluids experienced three stages.The ore-forming fluids of stageⅠhad a hydrochemical type of H_(2)O-CO_(2)-Na Cl,an ore-forming temperature of 375-650℃,and ore-forming pressure of 110-160 MPa.The ore-forming fluids of stageⅡhad a hydrochemical type of H_(2)O-CO_(2)-Na Cl,an ore-forming temperature of 310-350℃,and ore-forming pressure of 58-80 MPa.The ore-forming fluids of stageⅢhad a hydrochemical type of Na Cl-H_(2)O,an ore-forming temperature of 210-290℃,and ore-forming pressure of 5-12 MPa.The CuAu-Mo-Ag mineralization mainly occurred at stagesⅠandⅡ,with the ore-forming materials having a mixed crust-mantle source.The Duobaoshan porphyry Cu deposit was formed in the initial subduction environment of the Paleo-Asian Ocean Plate during the Early Ordovician.Then,due to the closure of the Mongol-Okhotsk Ocean and the subduction and compression of the Paleo-Pacific Ocean,a composite orogenic metallogenic model of the deposit was formed.In other words,it is a porphyry-epithermal copper-gold polymetallic mineralization system of composite orogeny consisting of Paleozoic island arcs and Mesozoic orogeny and extension.展开更多
Hydrothermal alteration with bleaching of host rocks is the most important prospecting indicator for gold deposits in the Jiangnan Orogen Belt.The alteration has been identified as pre-ore carbonate(siderite)-sericiti...Hydrothermal alteration with bleaching of host rocks is the most important prospecting indicator for gold deposits in the Jiangnan Orogen Belt.The alteration has been identified as pre-ore carbonate(siderite)-sericitization and the Fe of siderite in the alteration zone is derived from the host rocks rather than fluids.In addition,such alteration decreases in intensity and width with depth and gold mineralization also occur in the non-bleached rocks,casting doubt on the reliability of the prospecting indicator.Detailed petrographic work and SEM analysis on the Wangu deposit indicate that there are two types of siderites,i.e.,Sd1 and Sd2.Among them,Sd1 grains are relatively small and distributed along the planes of unaltered host rocks,while Sd2 grains,only occurring in the altered slates,are commonly larger.Both types of siderites were altered by auriferous fluids,producing porous cores and minerals such as pyrite,quartz,and ankerite.Compared with unaltered parts,the altered parts have lower Fe,but higher U,Pb,and REE.In addition,Sd1 and Sd2 are similar in Mn,Na,V,and Sr concentrations but different in Fe and Mg.The occurrence and geochemical compositions of both siderites indicate that Sd1 could be transformed into Sd2 by pre-mineralization alteration through dissolution-reprecipitation.Chlorite is another important Fe-bearing mineral in the host rocks,and EPMA analysis suggests that it is ripidolite with relatively high Fe contents.Consequently,chlorite can also provide Fe to form the pre-ore carbonate(siderite)-sericitization.Geochemical modeling demonstrates that both ripidolite and siderite can result in sulfidation and therefore gold precipitation.As a result,this study demonstrates that pre-ore alteration with characterized bleaching is not a prerequisite for gold mineralization despite of its prominent features.Due to the presence of Fe-bearing Sd1 and chlorite,gold mineralization could still occur through sulfidation in the unaltered rocks.展开更多
Coarse-grained subaqueous fans are vital oil and gas exploration targets in the Bohai Bay basin,China.The insufficient understanding of their sedimentary processes,depositional patterns,and controlling factors restric...Coarse-grained subaqueous fans are vital oil and gas exploration targets in the Bohai Bay basin,China.The insufficient understanding of their sedimentary processes,depositional patterns,and controlling factors restricts efficient exploration and development.Coarse-grained subaqueous fans in the Yong′an area,Dongying Depression,are investigated in this study.These fans include nearshore subaqueous fans,and sublacustrine fans,and their sedimentary processes,depositional patterns and distribution characteristics are mainly controlled by tectonic activity and paleogeomorphology.Nearshore subaqueous fans developed near the boundary fault during the early–middle deposition stage due to strong tectonic activity and large topographic subsidence.Early sublacustrine fans developed at the front of the nearshore subaqueous fans in the area where the topography changed from gentle to steep along the source direction.While the topography was gentle,sublacustrine fans did not develop.During the late weak tectonic activity stage,late sublacustrine fans developed with multiple stages superimposed.Frequent fault activity and related earthquakes steepened the basin margin,and the boundary fault slopes were 25.9°–34°.During the early–middle deposition stage,hyperpycnal flows triggered by outburst floods developed.During the late deposition stage,with weak tectonic activity,seasonal floods triggered hyperpycnal flows,and hybrid event beds developed distally.展开更多
The supergiant Shuangjianzishan(SJZ) Ag-Pb-Zn deposit is in the southern segment of the Great Hinggan Range(SGHR), northeast China. Previous studies suggest the ore-forming material and fluid originated from the magma...The supergiant Shuangjianzishan(SJZ) Ag-Pb-Zn deposit is in the southern segment of the Great Hinggan Range(SGHR), northeast China. Previous studies suggest the ore-forming material and fluid originated from the magmatic system, and the mineralization age was consistent with the diagenetic age. However,the relationship between granitic magmatism and mineralization is still unclear in the SJZ. In this study, CH-O-He-Ar and in-situ S-Pb isotope analyses were conducted to determine the sources of ore-forming fluids and metals, which were combined with geochemistry data of SJZ granitoids from previous studies to constrain the relationship between the magmatism and the mineralization. The C-H-O-He-Ar-S-Pb isotopic compositions suggested the SJZ ore-forming material and fluids were derived from a magmatic source, which has mixed a small amount of mantle-derived materials. In addition, the disseminated sulfide from the syenogranite has comparable S-Pb isotopic composition with the sulfide minerals from ore veins,suggesting that the generation of the SJZ ore-forming fluids has a close relationship with the syenogranite magmatism. Combining with the geochemical characters of the syenogranite, the authors proposed that the mantle-derived fingerprint of the SJZ ore-forming fluid might be caused by the parent magma of the syenogranite, which was derived from partial melting of the juvenile lower crust, and underwent the residual melts segregated from a crystal mush in the shallow magma reservoir. The extraction of the syenogranite parent magma further concentrated the fertilized fluids, which was crucial to mineralization of the SJZ Ag-Pb-Zn deposit.展开更多
The Daheishan supergiant porphyry molybdenum deposit(also referred to as the Daheishan deposit)is the second largest molybdenum deposit in Asia and ranks fifth among the top seven molybdenum deposits globally with tot...The Daheishan supergiant porphyry molybdenum deposit(also referred to as the Daheishan deposit)is the second largest molybdenum deposit in Asia and ranks fifth among the top seven molybdenum deposits globally with total molybdenum reserves of 1.65 billion tons,an average molybdenum ore grade of 0.081%,and molybdenum resources of 1.09 million tons.The main ore body is housed in the granodiorite porphyry plutons and their surrounding inequigranular granodiorite plutons,with high-grade ores largely located in the ore-bearing granodiorite porphyries in the middle-upper part of the porphyry plutons.Specifically,it appears as an ore pipe with a large upper part and a small lower part,measuring about 1700 m in length and width,extending for about 500 m vertically,and covering an area of 2.3 km^(2).Mineralogically,the main ore body consists of molybdenite,chalcopyrite,and sphalerite horizontally from its center outward and exhibits molybdenite,azurite,and pyrite vertically from top to bottom.The primary ore minerals include pyrite and molybdenite,and the secondary ore minerals include sphalerite,chalcopyrite,tetrahedrite,and scheelite,with average grades of molybdenum,copper,sulfur,gallium,and rhenium being 0.081%,0.033%,1.67%,0.001%,and 0.0012%,respectively.The ore-forming fluids of the Daheishan deposit originated as the CO_(2)-H_(2)O-NaCl multiphase magmatic fluid system,rich in CO_(2)and bearing minor amounts of CH4,N2,and H2S,and later mixed with meteoric precipitation.In various mineralization stages,the ore-forming fluids had homogenization temperatures of>420℃‒400℃,360℃‒350℃,340℃‒230℃,220℃‒210℃,and 180℃‒160℃and salinities of>41.05%‒9.8%NaCleqv,38.16%‒4.48%NaCleqv,35.78%‒4.49%NaCleqv,7.43%NaCleqv,and 7.8%‒9.5%NaCleqv,respectively.The mineralization of the Daheishan deposit occurred at 186‒167 Ma.The granites closely related to the mineralization include granodiorites(granodiorite porphyries)and monzogranites(monzogranite porphyries),which were mineralized after magmatic evolution(189‒167 Ma).Moreover,these mineralization-related granites exhibit low initial strontium content and high initial neodymium content,indicating that these granites underwent crust-mantle mixing.The Daheishan deposit formed during the Early-Middle Jurassic,during which basaltic magma underplating induced the lower-crust melting,leading to the formation of magma chambers.After the fractional crystallization of magmas,ore-bearing fluids formed.As the temperature and pressure decreased,the ore-bearing fluids boiled drops while ascending,leading to massive unloading of metal elements.Consequently,brecciated and veinlet-disseminated ore bodies formed.展开更多
The Ain El Bey abandoned mine, in North-West Tunisia, fits into the geodynamic context of the European and African plate boundary. Ore deposit corresponds to veins and breccia of multiphase Cu–Fe-rich mineralization ...The Ain El Bey abandoned mine, in North-West Tunisia, fits into the geodynamic context of the European and African plate boundary. Ore deposit corresponds to veins and breccia of multiphase Cu–Fe-rich mineralization related to various hydrothermal fluid circulations. Petromineralogical studies indicate a rich mineral paragenesis with a minimum of seven mineralization phases and, at least, six pyrite generations. As is also the case for galena and native silver, native gold is observed for the first time as inclusion in quartz which opens up, thus, new perspectives for prospecting and evaluating the potential for noble metals associated with the mineralization. Scanning Electron Microscope--Energy Dispersive Spectroscopy and Transmission electron microscopy analyses show, in addition, a large incorporation of trace elements, including Ag and Au, in mineral structures such as fahlores(tetrahedrite-tennantite) and chalcopyrite ones. The mineral/mineral associations, used as geothermometers, gave estimated temperatures for the mineralizing fluids varying from 254 to 330 ℃ for phase Ⅲ, from 254 to 350 ℃ for phase Ⅳ, and from 200 to 300 ℃ for phases Ⅴ and Ⅵ. The seventh and last identified mineralization phase, marked by a deposit of native gold, reflects a drop in the mineralizing fluid’s temperature(< 200 ℃) compatible with boiling conditions. Such results open up perspectives for the development of precious metal research and the revaluation of the Cu–Fe ore deposit at the Ain El Bey abandoned mine, as well as at the surrounding areas fitting in the geodynamic framework of the Africa-Europe plate boundary.展开更多
基金financially supported by the National Natural Science Foundation of China(grant No.41302061)
文摘Rare metal ore reserves are an important strategic resource, and their metallogenic mechanism and mineralization studies have also been received widespread international attention.
文摘1 Introduction Studies of marine sedimentary phosphate rock have lasted decades,scholars proposed some standpoints about mineralization,however,the genesis of mineral deposits remains to be a controversial question(She et al.,2013).There are many viewpoints of mineralization about the Doushantuo phosphorites,Central Guizhou,including biological mineralization(Mi et al.,2010;Shi et al.,2005),
基金funded by the National Natural Science Foundation of China(Grant No.41172047)the Open Fund of the Key Laboratory of Ore Deposit Geochemistry(Institute of Geochemistry,Chinese Academy of Sciences,Guiyang),(Grant No.201308)the Open Fund of the Key Laboratory Metallogeny and Mineral Resource Assessment,Ministry of Land and Resources(Institute of Mineral Resources,Chinese Academy of Geological Sciences,Beijing)(Grant No.ZS1407)
文摘Spinel exsolution is widespread in titanomagnetite from the Fe-Ti oxide gabbro of the Panzhihua intrusion, Emeishan Large Igneous Province, SW China. However, little research has been conducted into the implications of patterns in the mineralogical characteristics of the spinel for spatial variation in the controls on the exsolution mechanism and, hence, the formation process of the ore deposit. This study selected the Lanjiahuoshan Ore Block in the Panzhihua V-Ti magnetite deposit to explore this issue, systematically studying exsolution textures in the titanomagnetite through petrographic observation and the integrated use of in-situ microanalysis. The results show that the exsolved spinel gradually becomes finer-grained and less abundant from the center to edge and the bottom to top of the ore bodies. Compositionally, there is an inverse correlation between the size of exsolved spinel grains and their Mg# value. In addition, there is compositional zonation in the spinel interiors, with a gradual increase in the Mg content and decrease in Fe content from the core to the rim. The analysis suggests that fractional crystallization of ferrotitanium magma with a high oxygen fugacity in a shallow magma chamber caused compositional differences in the primary magnetite solid solution in different parts of the Panzhihua intrusion. Additionally, the thermal evolution of the magnetite solid solution differed in different parts of orebody, bringing about variations in spinel development. Together, these effects resulted in spatial variation in the abundance, grain size, and morphology of spinel in different parts of the orebody and intrusion that follows an identifiable distribution law. Furthermore, the compositional zonation of exsolved spinels reflects the rapid growth of exsolution features in a high-temperature environment. Thus, the size, morphology, abundance, and composition of spinel exsolution features in titanomagnetite provide a valuable petrogenetic tool for estimating the maturity and formational environment of the deposit.
基金financially supported by the project of the China Geological Survey(DD20230292,DD20242591)。
文摘The Dongping deposit is the largest alkalic-hosted gold deposit in China containing>100 t of Au.This paper presents a new understanding for Dongping ore system,based on the previous studies.The mineralization originally occurred at 400-380 Ma,simultaneous with emplacement of the Shuiquangou alkaline complex,and was overprinted by the hydrothermal activity in the Yanshanian.Isotope compositions of ores indicate metals of the deposit are mainly provided by the Shuiquangou complex.Ore-forming fluids are characterized by increasing oxygen fugacity and decreasing sulfur fugacity,while tellurium fugacity increased in the Stage II-2 and decreased in Stage II-3.These systematic changes are closely related to the processes of mineral precipitation and fluid evolution.Sulfide precipitation from Stage Ⅰ to Stage Ⅱ was triggered by fluid boiling,which leads to the precipitation of Pb-Bi-Te,due to decrement of sulfur fugacity.Condensation of gas phase containing high concentration of H_2Te leads to precipitation of Te-Au-Ag minerals and native tellurium.Based on these hypotheses,this paper present a polyphase metallogenic model as follow.During the Devonian,fluids were released from alkaline magmas,which carried ore-forming materials form the surrounding rocks and precipitate the early ores.During the Jurassic-Cretaceous,fluorine-rich fluids exsolved from highly factionated Shangshuiquan granite,which extracted and concentrated Au from the Shuiquangou complex and the Sanggan Group metamorphic rocks,and finally formed the Dongping gold deposit.
基金the Scientific research and technology development project of Petro China(2021DJ5303)。
文摘Sedimentary process research is of great significance for understanding the distribution and characteristics of sediments.Through the detailed observation and measurement of the Sangyuan outcrop in Luanping Basin,this paper studies the depositional process of the hyperpycnal flow deposits,and divides their depositional process into three phases,namely,acceleration,erosion and deceleration.In the acceleration phase,hyperpycnal flow begins to enter the basin nearby,and then speeds up gradually.Deposits developed in the acceleration phase are reverse.In addition,the original deposits become unstable and are taken away by hyperpycnal flows under the eroding force.As a result,there are a lot of mixture of red mud pebbles outside the basin and gray mud pebbles within the basin.In the erosion phase,the reverse deposits are eroded and become thinner or even disappear.Therefore,no reverse grading characteristic is found in the proximal major channel that is closer to the source,but it is still preserved in the middle branch channel that is far from the source.After entering the deceleration phase,normally grading deposits appear and cover previous deposits.The final deposits in the basin are special.Some are reverse,and others are normal.They are superimposed with each other under the action of hyperpycnal flow.The analysis of the Sangyuan outcrop demonstrates the sedimentary process and distribution of hyperpycnites,and reasonably explain the sedimentary characteristics of hyperpycnites.It is helpful to the prediction of oil and gas exploration targets in gravity flow deposits.
基金funded by the major research program of the of National Natural Science Foundation of China entitled Metallogenic Mechanisms and Regularity of the Lithium Ore Concentration Area in the Zabuye Salt Lake, Tibet (91962219)Science and Technology Major Project of the Tibet Autonomous Region ’s Science and Techonlogy Plan (XZ202201ZD0004G01)a geological survey project of China Geological Survey (DD20230037)。
文摘A reasonable classification of deposits holds great significance for identifying prospecting targets and deploying exploration. The world ’s keen demand for lithium resources has expedited the discovery of numerous novel lithium resources. Given the presence of varied classification criteria for lithium resources presently, this study further ascertained and classified the lithium resources according to their occurrence modes, obtaining 10 types and 5 subtypes of lithium deposits(resources) based on endogenetic and exogenetic factors. As indicated by surveys of Cenozoic exogenetic lithium deposits in China and abroad,the formation and distribution of the deposits are primarily determined by plate collision zones, their primary material sources are linked to the anatectic magmas in the deep oceanic crust, and they were formed primarily during the Miocene and Late Paleogene. The researchers ascertained that these deposits,especially those of the salt lake, geothermal, and volcanic deposit types, are formed by unique slightly acidic magmas, tend to migrate and accumulate toward low-lying areas, and display supernormal enrichment. However, the material sources of lithium deposits(resources) of the Neopaleozoic clay subtype and the deep brine type are yet to be further identified. Given the various types and complex origins of lithium deposits(resources), which were formed due to the interactions of multiple spheres, it is recommended that the mineralization of exogenetic lithium deposits(resources) be investigated by integrating tectono-geochemistry, paleoatmospheric circulation, and salinology. So far, industrialized lithium extraction is primarily achieved in lithium deposits of the salt lake, clay, and hard rock types. The lithium extraction employs different processes, with lithium extraction from salt lake-type lithium deposits proving the most energy-saving and cost-effective.
基金This research was funded by the National Natural Science Foundation of China(No.41862007)the Key Disciplines Construction of Kunming University of Science and Technology(No.14078384)the Yunnan Ten Thousand Talents Plan Young&Elite Talents Project(YNWR-QNBJ-2018-093)。
文摘The Yangla Cu skarn deposit is located in the central part of the Jinshajiang Suture Zone,southwest China,with a total reserve of 150 Mt Cu@1.03%.The newly discovered antimony orebodies at the depth of Yangla are strictly controlled by the stratum,structure,and lithology,which are lenticular and vein-like within the marble fracture zone,which can provide a window into multistage miner-alization and ore genesis at Yangla.Mineralization can be divided into three types,Cu–Pb–Zn(skarn)pyrite,galena,and sphalerite,Cu(porphyry)chalcopyrite and pyrite,and Sb(hydrothermal)stibnite and pyrite.The mineral assem-blages were stibnite+pyrite+calcite+quartz±minor scheelite in antimony ores.This study presents quantitative measurements of the trace element compositions of pyrite and stibnite from the Yangla antimony ores.Analysis of pyrite with electron probe microanalysis(EPMA)showed enrichment in Co,Ni,Sb,As,and Mo,and deficit in its S and Fe contents when compared to the stoichiometric con-centrations of S and Fe in pyrite.The Sb-related pyrite may belong to sedimentary-reworked genesis and may be modi-fied by hydrothermalfluids,thereby presenting a certain dif-ference(i.e.,crystal morphology,texture,and chemical com-position)compared to the skarn and porphyry Cu-related pyrite in the Yangla Cu skarn deposit.Analysis of stibnite with EPMA and inductively coupled plasma-mass spectrom-etry showed enrichment in As,Pb,Sn,Pb,Cu,and Zn,and presented much higher Sb contents and slightly lower S con-tents when compared to the stoichiometric concentrations of Sb and S in stibnite.Statistical analysis of the stibnite trace elements showed correlations for the elemental pairs Cu–Pb,As–Sb,and Sn–Pb,and the coupled substitution equations Sb^(3+)↔Cu^(+)+Pb^(2+),Sb^(3+)↔As^(3+),and Sn^(2+)↔Pb^(2+)may be the major factors governed the incorporating Cu,Pb,As and Sn within the stibnite.Moreover,this study preliminary shows that the antimony mineralization may belong to a car-bonate replacement hydrothermal genesis at Yangla.
基金supported by the Key Research Project of China Geological Survey(Grant No.DD20230564)the Research Project of Natural Resources Department of Gansu Province(Grant No.202219)。
文摘Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization.This approach provides key information for the quantitative prediction of deep mineral localization,three-dimensional fine interpolation,analysis of spatial distribution patterns,and extraction of quantitative mineral-seeking markers.The Yechangping molybdenum(Mo)deposit is a significant and extensive porphyry-skarn deposit in the East Qinling-Dabie Mo polymetallic metallogenic belt at the southern margin of the North China Block.Abundant borehole data on oreforming elements underpin deep geochemical predictions.The methodology includes the following steps:(1)Threedimensional geological modeling of the deposit was established.(2)Correlation,cluster,and factor analyses post delineation of mineralization stages and determination of mineral generation sequence to identify(Cu,Pb,Zn,Ag)and(Mo,W,mfe)assemblages.(3)A three-dimensional geochemical block model was constructed for Mo,W,mfe,Cu,Zn,Pb,and Ag using the ordinary kriging method,and the variational function was developed.(4)Spatial distribution and enrichment characteristics analysis of ore-forming elements are performed to extract geological information,employing the variogram and w(Cu+Pb+Zn+Ag)/w(Mo+W)as predictive indicators.(5)Identifying the western,northwestern,and southwestern areas of the mine with limited mineralization potential,contrasted by the northeastern and southeastern areas favorable for mineral exploration.
基金financially supported by the Natural Science Foundation of China(Grant Nos.42272104,42172094 and 41772076)。
文摘The Wangjiazhuang Cu(-Mo)deposit,located within the Zouping volcanic basin in western Shandong Province,China,is unique in this area for having an economic value.In order to expound the metallogenetic characteristics of this porphyry-like hydrothermal deposit,a detailed fluid inclusion study has been conducted,employing the techniques of representative sampling,fluid inclusion petrography,microthermometry,Raman spectroscopy,LA-ICP-MS analysis of single fluid inclusions,as well as cathode fluorescence spectrometer analysis of host mineral quartz.The deposit contains mainly two types of orebodies,i.e.veinlet-dissemination-stockwork orebodies in the K-Si alteration zone and pegmatiticquartz sulfide veins above them.In addition,minor breccia ore occurs locally.Four types of fluid inclusions in the deposit and altered quartz monzonite are identified:L-type one-or two-phase aqueous inclusions,V-type vapor-rich inclusions with V/L ratios greater than 50%-90%,D-type multiphase fluid inclusions containing daughter minerals or solids and S-type silicate-bearing fluid inclusions containing mainly muscovite and biotite.Ore petrography and fluid inclusion study has revealed a three-stage mineralization process,driven by magmatic-hydrothermal fluid activity,as follows.Initially,a hydrothermal fluid,separated from the parent magma,infiltrated into the quartz monzonite,resulting in its extensive K-Si alteration,as indicated by silicate-bearing fluid inclusions trapped in altered quartz monzonite.This is followed by the early mineralization,the formation of quartz veinlets and dissemination-stockwork ores.During the main mineralization stage,due to the participation and mixing of meteoric groundwater with magmatic-sourced hydrothermal fluid,the cooling and phase separation caused deposition of metals from the hydrothermal fluids.As a result,the pegmatitic-quartz sulfide-vein ores formed.In the late mineralization stage,decreasing fluid salinity led to the formation of L-type aqueous inclusions and chalcopyrite-sulfosalt ore.Coexistence of V-type and D-type inclusions and their similar homogenization temperatures with different homogenization modes suggest that phase separation or boiling of the ore-forming fluids took place during the early and the main mineralization stages.The formation P-T conditions of S-type inclusions and the early and the main mineralization stages were estimated as ca.156-182 MPa and 450-650℃,350-450℃,18-35 MPa and 280-380℃,8-15 MPa,respectively,based on the microthermometric data of the fluid inclusions formed at the individual stages.
基金jointly supported by the National Natural Science Foundation of China(4220207742103025)+5 种基金the Opening Foundation of MNR Key Laboratory of Metallogeny and Mineral Assessment(ZS2209ZS2106)the Opening Foundation of Key Laboratory of Mineral Resources in Western China(Gansu Province)(MRWCGS-2021-01)the Natural Science Foundation of Gansu Province(22JR5RA440)the Fundamental Research Funds for the Central Universities(LZUJBKY-2022-42)the Guiding Special Funds of“Double First-Class(First-Class University&First-Class Disciplines)”(561119201)of Lanzhou University,China。
文摘Porphyry Cu(Mo-Au)deposit is one of the most important types of copper deposit and usually formed under magmatic arc-related settings,whilst the Mujicun porphyry Cu-Mo deposit in North China Craton uncommonly generated within intra-continental settings.Although previous studies have focused on the age,origin and ore genesis of the Mujicun deposit,the ore-forming age,magma source and tectonic evolution remain controversial.Here,this study targeted rutile(TiO_(2))in the ore-hosting diorite porphyry from the Mujicun Cu-Mo deposit to conduct in situ U-Pb dating and trace element composition studies,with major views to determine the timing and magma evolution and to provide new insights into porphyry Cu-Mo metallogeny.Rutile trace element data show flat-like REE patterns characterized by relatively enrichment LREEs and depleted HREEs,which could be identified as magmatic rutile.Rutile U-Pb dating yields lower intercept ages of 139.3–138.4 Ma,interpreted as post magmatic cooling timing below about 500℃,which are consistent or slightly postdate with the published zircon U-Pb ages of diorite porphyry(144.1–141.7 Ma)and skarn(146.2 Ma;139.9 Ma)as well as the molybdenite Re-Os ages of molybdenum ores(144.8–140.0 Ma).Given that the overlap between the closure temperature of rutile U-Pb system and ore-forming temperature of the Mujicun deposit,this study suggests that the ore-forming ages of the Mujicun deposit can be constrained at 139.3–138.4 Ma,with temporal links to the late large-scale granitic magmatism at 138–126 Ma in the Taihang Orogen.Based on the Mg and Al contents in rutile,the magma of ore-hosting diorite porphyry was suggested to be derived from crust-mantle mixing components.In conjunction with previous studies in Taihang Orogen,this study proposes that the far-field effect and the rollback of the subducting Paleo-Pacific slab triggered lithospheric extension,asthenosphere upwelling,crust-mantle interaction and thermo-mechanical erosion,which jointly facilitated the formation of dioritic magmas during the Early Cretaceous.Subsequently,the dioritic magmas carrying crust-mantle mixing metallic materials were emplaced and precipitated at shallow positions along NNE-trending ore-controlling faults,eventually resulting in the formation of the Mujicun Cu-Mo deposit within an intracontinental extensional setting.
基金funded by projects of the China Geological Survey(Nos.DD20242070,DD20230763,DD20221695,DD20190379,and DD20160346)。
文摘The Hongqiling large nickel-copper-cobalt deposit(hereafter referred to as the Hongqiling deposit),a typical mafic-ultramafic copper-nickel deposit in China,boasts proven Ni(Ni)resources of approximately 22×10^(4)t,associated copper resources of 2×10^(4)t,and associated cobalt(Co)resources of 0.5×10^(4)t,with Ni reserves ranking 10th among China's magmatic nickel deposits.Geotectonically,the Hongqiling deposit is situated in the superimposed zone between the Xing'an-Mongolian orogenic belt and the circum-Western Pacific's active continental margin belt.Its ore-bearing plutons occur within the metamorphic rocks of the Ordovician Hulan Group,with the emplacement of plutons and the locations of orebodies governed by the deep-seated Huifahe fault and its secondary NW-trending Fujia-Hejiagou-Beixinglong-Changsheng fault zone.In the deposit,the rock assemblages of ore-bearing plutons predominantly encompass gabbro-pyroxenite-olivine pyroxenite-pyroxene peridotite(pluton No.1)and norite-orthopyroxenite-harzburgite(pluton No.7),with ore-bearing lithofacies consisting primarily of olivine pyroxenite and pyroxenite facies.The Hongqiling deposit hosts stratoid,overhanging lentoid,veined,and pure-sulfide veined orebodies.Its ores principally contain metallic minerals including pyrrhotite,pentlandite,chalcopyrite,violarite,and pyrite.Despite unidentified magma sources of ore-bearing mafic-ultramafic rocks,it is roughly accepted that the magmatic evolution in the Hongqiling deposit primarily involved fractional crystallization and crustal contamination.The ore-forming materials were primarily derived from the upper mantle,mixed with minor crustal materials.The ore-bearing mafic-ultramafic rocks in the deposit,primarily emplaced during the Indosinian(208-239 Ma),were formed in an intense extension setting followed by the collisional orogeny between the North China Plate and the Songnen-Zhangguangcai Range Block during the Middle-Late Triassic.From the perspective of the metallogenic geological setting,surrounding rocks,ore-controlling structures,and rock assemblages,this study identified one favorable condition and seven significant indicators for prospecting for Hongqiling-type nickel deposits and developed a prospecting model of the Hongqiling deposit.These serve as valuable references for exploring similar nickel deposits in the region,as well as the deep parts and margins of the Hongqiling deposit.
文摘Mg-alloys have gained considerable attention in recent years for their outstanding properties such as lightweight,high specific strength,and corrosion resistance,making them attractive for applications in medical,aerospace,automotive,and other transport industries.However,their widespread application is hindered by their low formability at room temperature due to limited slip systems.Cast Mg-alloys have low mechanical properties due to the presence of casting defects such as porosity and anisotropy in addition to the high scrap.While casting methods benefit from established process optimization techniques for these problems,additive manufacturing methods are increasingly replacing casting methods in Mg alloys as they provide more precise control over the microstructure and allow specific grain orientations,potentially enabling easier optimization of anisotropy properties in certain applications.Although metal additive manufacturing(MAM)technology also results in some manufacturing defects such as inhomogeneous microstructural evolution and porosity and additively manufactured Mg alloy parts exhibit lower properties than the wrought parts,they in general exhibit superior properties than the cast counterparts.Thus,MAM is a promising technique to produce Mg alloy parts.Directed energy deposition processes,particularly wire arc directed energy deposition(WA-DED),have emerged as an advantageous additive manufacturing(AM)technique for metallic materials including magnesium alloys,offering advantages such as high deposition rates,improved material efficiency,and reduced production costs compared to subtractive processes.However,the inherent challenges associated with magnesium,such as its high reactivity and susceptibility to oxidation,pose unique hurdles in the application of this technology.This review paper delves into the progress made in the application of DED technology to Mg-alloys,its challenges,and prospects.Furthermore,the predominant imperfections,notably inhomogeneous microstructure evolution and porosity,observed in Mg-alloy components manufactured through DED are discussed.Additionally,the preventive measures implemented to counteract the formation of these defects are explored.
基金financially supported by National Natural Science Foundation of China(42272106,41202067)Open Fund of State Key Laboratory for Mineral Deposits Research,Nanjing University(2019-LAMD-K12)China Geological Survey(DD20211386,DD20211392,DD20179603).
文摘The Liwu stratiform copper deposit is located in the northwestern Jianglang dome,western China.Current studies mainly focus on the genetic type and mineralization of this deposit.Detailed fluid inclusion characteristics of metallogenic period quartz veins were studied to reveal the ore-forming fluid features.Laser Raman analysis indicates that the ore-forming fluids is a H_(2)O-NaCl-CH_(4)(-CO_(2))system.Fluid inclusions microthermometry shows a homogenization temperature of 181-375°C and a salinity of 5.26%-16.99%for the disseminated-banded Cu-Zn mineralization;but a homogenization temperature of 142-343°C and a salinity of 5.41%-21.19%for the massive-veined Cu-Zn mineralization.These features suggest a medium-high temperature and a medium salinity for the ore-forming fluids.H-O isotopic data indicates that the ore-forming fluids were mainly from the metamorphic and magmatic water,plus minor formation water.And sulfur isotopic data indicates that sulfur was mainly derived from the formation and magmatic rocks.Metallogenesis of the disseminated-banded mineralization was mainly correlated with fluid mixing and water-rock reaction;whereas that of the massive-veined mineralization was mainly correlated with fluid boiling.The genetic type of the deposit is a medium-high temperature hydrothermal deposit related to magmatism and controlled by shear zones.This study is beneficial to understand the stratiform copper deposit.
文摘The mineralization is related closely to sedimentation, diagenesis and hydrothermal processes. In this paper, investigations are carried out on coal occurrence, maceral composition, inorganic minerals, trace elements and huminite reflectance. It is concluded that the source of Lincang superlarge deposit is mainly the muscovite granite in the west edge of the basin. During sedimentation, Ge (germanium) was leached out and entered the basin. Ge was adsorbed by lower organism and humic substances in water. Lincang lignite underwent three thermal processes: peatification, early diagenesis and hydrothermal transformation. During peatification, Ge was adsorbed or complexed by humic colloids. During early diagenesis, the Ge associated with humic acids was hard to mobilize or transport. Most of Ge entered the structure of huminite while a small amount of Ge was associated with residual humic acids as complex or humate. During hydrothermal transformation, the heated natural water or deep fluid from basement encountered the coal layer within tectonic weak zone. SO 2- 4 was reduced by coal organic matter. Pyrite and calcite formed. Hydrothermal process did not contribute significantly to mineralization.
基金funded by the National Scientific and Technological Basic Resources Investigation Program(2022FY101800)a project of the National Natural Science Foundation of China(42102087)+1 种基金a project of the China Postdoctoral Science Foundation(2022M712966)a major project of the Ministry of Science and Technology of the People’s Republic of China(2021QZKK0304)。
文摘The reserves of the Duobaoshan porphyry Cu-Au-Mo-Ag deposit(also referred to as the Duobaoshan porphyry Cu deposit)ranks first among the copper deposits in China and 33rd among the porphyry copper deposits in the world.It has proven resources of copper(Cu),molybdenum(Mo),gold(Au),and silver(Ag)of 2.28×10^(6)t,80×10^(3)t,73 t,and 1046 t,respectively.The major characteristics of the Duobaoshan porphyry Cu deposit are as follows.It is located in a zone sandwiched by the Siberian,North China,and paleo-Pacific plates in an island arc tectonic setting and was formed by the Paleozoic mineralization and the Mesozoic mineralization induced by superposition and transformation.The metallogenic porphyries are the Middle Hercynian granodiorite porphyries.The alterations of surrounding rocks are distributed in a ring form.With silicified porphyries at the center,the alteration zones of K-feldspar,biotite,sericite,and propylite occur from inside to outside.This deposit is composed of 215 ore bodies(including 14 major ore bodies)in four mineralized zones.Ore body No.X in the No.3 mineralized zone has the largest resource reserves,accounting for more than 78%of the total reserves of the deposit.Major ore components include Cu,Mo,Au,Ag,Se,and Ga,which have an average content of 0.46%,0.015%,0.16 g/t,1.22 g/t,0.0003%,and 0.001%-0.003%,respectively.The ore minerals of this deposit primarily include pyrite,chalcopyrite,bornite,and molybdenite,followed by magnetite,hematite,rutile,gelenite,and sphalerite.The ore-forming fluids of this deposit were magmatic water in the early metallogenic stage and then the mixture of meteoric water and magmatic water at the late metallogenic stage.The ore-forming fluids experienced three stages.The ore-forming fluids of stageⅠhad a hydrochemical type of H_(2)O-CO_(2)-Na Cl,an ore-forming temperature of 375-650℃,and ore-forming pressure of 110-160 MPa.The ore-forming fluids of stageⅡhad a hydrochemical type of H_(2)O-CO_(2)-Na Cl,an ore-forming temperature of 310-350℃,and ore-forming pressure of 58-80 MPa.The ore-forming fluids of stageⅢhad a hydrochemical type of Na Cl-H_(2)O,an ore-forming temperature of 210-290℃,and ore-forming pressure of 5-12 MPa.The CuAu-Mo-Ag mineralization mainly occurred at stagesⅠandⅡ,with the ore-forming materials having a mixed crust-mantle source.The Duobaoshan porphyry Cu deposit was formed in the initial subduction environment of the Paleo-Asian Ocean Plate during the Early Ordovician.Then,due to the closure of the Mongol-Okhotsk Ocean and the subduction and compression of the Paleo-Pacific Ocean,a composite orogenic metallogenic model of the deposit was formed.In other words,it is a porphyry-epithermal copper-gold polymetallic mineralization system of composite orogeny consisting of Paleozoic island arcs and Mesozoic orogeny and extension.
基金co-founded by the National Natural Science Foundation of China(42002090,41930428)National Key Research and Development Program of China(No.2018YFC0604200)+3 种基金Open Research Fund Program of State Key Laboratory of Nuclear Resources and Environment,East China University of Technology(No.NRE1915)Open Research Fund Program of Jiangxi Engineering Laboratory on Radioactive Geoscience and Big Data Technology(JELRGBDT202006)International Geoscience Programme(IGCP675)Jiangxi province graduate student innovation special fund project(YC2019-S271,DHYC-202001)。
文摘Hydrothermal alteration with bleaching of host rocks is the most important prospecting indicator for gold deposits in the Jiangnan Orogen Belt.The alteration has been identified as pre-ore carbonate(siderite)-sericitization and the Fe of siderite in the alteration zone is derived from the host rocks rather than fluids.In addition,such alteration decreases in intensity and width with depth and gold mineralization also occur in the non-bleached rocks,casting doubt on the reliability of the prospecting indicator.Detailed petrographic work and SEM analysis on the Wangu deposit indicate that there are two types of siderites,i.e.,Sd1 and Sd2.Among them,Sd1 grains are relatively small and distributed along the planes of unaltered host rocks,while Sd2 grains,only occurring in the altered slates,are commonly larger.Both types of siderites were altered by auriferous fluids,producing porous cores and minerals such as pyrite,quartz,and ankerite.Compared with unaltered parts,the altered parts have lower Fe,but higher U,Pb,and REE.In addition,Sd1 and Sd2 are similar in Mn,Na,V,and Sr concentrations but different in Fe and Mg.The occurrence and geochemical compositions of both siderites indicate that Sd1 could be transformed into Sd2 by pre-mineralization alteration through dissolution-reprecipitation.Chlorite is another important Fe-bearing mineral in the host rocks,and EPMA analysis suggests that it is ripidolite with relatively high Fe contents.Consequently,chlorite can also provide Fe to form the pre-ore carbonate(siderite)-sericitization.Geochemical modeling demonstrates that both ripidolite and siderite can result in sulfidation and therefore gold precipitation.As a result,this study demonstrates that pre-ore alteration with characterized bleaching is not a prerequisite for gold mineralization despite of its prominent features.Due to the presence of Fe-bearing Sd1 and chlorite,gold mineralization could still occur through sulfidation in the unaltered rocks.
基金supported by the National Science Foundation of China(Grant Nos.41972099,4217020246)the National Science and Technology Major of China(Grant Nos.2017ZX05009-002,2017ZX05072-002)。
文摘Coarse-grained subaqueous fans are vital oil and gas exploration targets in the Bohai Bay basin,China.The insufficient understanding of their sedimentary processes,depositional patterns,and controlling factors restricts efficient exploration and development.Coarse-grained subaqueous fans in the Yong′an area,Dongying Depression,are investigated in this study.These fans include nearshore subaqueous fans,and sublacustrine fans,and their sedimentary processes,depositional patterns and distribution characteristics are mainly controlled by tectonic activity and paleogeomorphology.Nearshore subaqueous fans developed near the boundary fault during the early–middle deposition stage due to strong tectonic activity and large topographic subsidence.Early sublacustrine fans developed at the front of the nearshore subaqueous fans in the area where the topography changed from gentle to steep along the source direction.While the topography was gentle,sublacustrine fans did not develop.During the late weak tectonic activity stage,late sublacustrine fans developed with multiple stages superimposed.Frequent fault activity and related earthquakes steepened the basin margin,and the boundary fault slopes were 25.9°–34°.During the early–middle deposition stage,hyperpycnal flows triggered by outburst floods developed.During the late deposition stage,with weak tectonic activity,seasonal floods triggered hyperpycnal flows,and hybrid event beds developed distally.
基金supported financially by the China Geological Survey project [DD20160123 (DD-16-049, D1522), DD20160050, DD20190370]the Fundamental Research Funds for the Central Universities (310827171122)the National Natural Science Foundation of China (Grant 41672068)。
文摘The supergiant Shuangjianzishan(SJZ) Ag-Pb-Zn deposit is in the southern segment of the Great Hinggan Range(SGHR), northeast China. Previous studies suggest the ore-forming material and fluid originated from the magmatic system, and the mineralization age was consistent with the diagenetic age. However,the relationship between granitic magmatism and mineralization is still unclear in the SJZ. In this study, CH-O-He-Ar and in-situ S-Pb isotope analyses were conducted to determine the sources of ore-forming fluids and metals, which were combined with geochemistry data of SJZ granitoids from previous studies to constrain the relationship between the magmatism and the mineralization. The C-H-O-He-Ar-S-Pb isotopic compositions suggested the SJZ ore-forming material and fluids were derived from a magmatic source, which has mixed a small amount of mantle-derived materials. In addition, the disseminated sulfide from the syenogranite has comparable S-Pb isotopic composition with the sulfide minerals from ore veins,suggesting that the generation of the SJZ ore-forming fluids has a close relationship with the syenogranite magmatism. Combining with the geochemical characters of the syenogranite, the authors proposed that the mantle-derived fingerprint of the SJZ ore-forming fluid might be caused by the parent magma of the syenogranite, which was derived from partial melting of the juvenile lower crust, and underwent the residual melts segregated from a crystal mush in the shallow magma reservoir. The extraction of the syenogranite parent magma further concentrated the fertilized fluids, which was crucial to mineralization of the SJZ Ag-Pb-Zn deposit.
基金This study was jointly funded by a project of the National Natural Science Foundation of China(42102087)a project of the China Postdoctoral Science Foundation(2022M712966)a key special project of the Ministry of Science and Technology of China(2021QZKK0304).
文摘The Daheishan supergiant porphyry molybdenum deposit(also referred to as the Daheishan deposit)is the second largest molybdenum deposit in Asia and ranks fifth among the top seven molybdenum deposits globally with total molybdenum reserves of 1.65 billion tons,an average molybdenum ore grade of 0.081%,and molybdenum resources of 1.09 million tons.The main ore body is housed in the granodiorite porphyry plutons and their surrounding inequigranular granodiorite plutons,with high-grade ores largely located in the ore-bearing granodiorite porphyries in the middle-upper part of the porphyry plutons.Specifically,it appears as an ore pipe with a large upper part and a small lower part,measuring about 1700 m in length and width,extending for about 500 m vertically,and covering an area of 2.3 km^(2).Mineralogically,the main ore body consists of molybdenite,chalcopyrite,and sphalerite horizontally from its center outward and exhibits molybdenite,azurite,and pyrite vertically from top to bottom.The primary ore minerals include pyrite and molybdenite,and the secondary ore minerals include sphalerite,chalcopyrite,tetrahedrite,and scheelite,with average grades of molybdenum,copper,sulfur,gallium,and rhenium being 0.081%,0.033%,1.67%,0.001%,and 0.0012%,respectively.The ore-forming fluids of the Daheishan deposit originated as the CO_(2)-H_(2)O-NaCl multiphase magmatic fluid system,rich in CO_(2)and bearing minor amounts of CH4,N2,and H2S,and later mixed with meteoric precipitation.In various mineralization stages,the ore-forming fluids had homogenization temperatures of>420℃‒400℃,360℃‒350℃,340℃‒230℃,220℃‒210℃,and 180℃‒160℃and salinities of>41.05%‒9.8%NaCleqv,38.16%‒4.48%NaCleqv,35.78%‒4.49%NaCleqv,7.43%NaCleqv,and 7.8%‒9.5%NaCleqv,respectively.The mineralization of the Daheishan deposit occurred at 186‒167 Ma.The granites closely related to the mineralization include granodiorites(granodiorite porphyries)and monzogranites(monzogranite porphyries),which were mineralized after magmatic evolution(189‒167 Ma).Moreover,these mineralization-related granites exhibit low initial strontium content and high initial neodymium content,indicating that these granites underwent crust-mantle mixing.The Daheishan deposit formed during the Early-Middle Jurassic,during which basaltic magma underplating induced the lower-crust melting,leading to the formation of magma chambers.After the fractional crystallization of magmas,ore-bearing fluids formed.As the temperature and pressure decreased,the ore-bearing fluids boiled drops while ascending,leading to massive unloading of metal elements.Consequently,brecciated and veinlet-disseminated ore bodies formed.
基金funded by the “Laboratoire de Recherche Ressources, Matériaux et Ecosystémes”, University of Carthage 7021 Zarzouna, Bizerte, Tunisia
文摘The Ain El Bey abandoned mine, in North-West Tunisia, fits into the geodynamic context of the European and African plate boundary. Ore deposit corresponds to veins and breccia of multiphase Cu–Fe-rich mineralization related to various hydrothermal fluid circulations. Petromineralogical studies indicate a rich mineral paragenesis with a minimum of seven mineralization phases and, at least, six pyrite generations. As is also the case for galena and native silver, native gold is observed for the first time as inclusion in quartz which opens up, thus, new perspectives for prospecting and evaluating the potential for noble metals associated with the mineralization. Scanning Electron Microscope--Energy Dispersive Spectroscopy and Transmission electron microscopy analyses show, in addition, a large incorporation of trace elements, including Ag and Au, in mineral structures such as fahlores(tetrahedrite-tennantite) and chalcopyrite ones. The mineral/mineral associations, used as geothermometers, gave estimated temperatures for the mineralizing fluids varying from 254 to 330 ℃ for phase Ⅲ, from 254 to 350 ℃ for phase Ⅳ, and from 200 to 300 ℃ for phases Ⅴ and Ⅵ. The seventh and last identified mineralization phase, marked by a deposit of native gold, reflects a drop in the mineralizing fluid’s temperature(< 200 ℃) compatible with boiling conditions. Such results open up perspectives for the development of precious metal research and the revaluation of the Cu–Fe ore deposit at the Ain El Bey abandoned mine, as well as at the surrounding areas fitting in the geodynamic framework of the Africa-Europe plate boundary.