Carbon nanotubes(CNTs) were deposited uniformly on carbon cloth by electrophoretic deposition(EPD). Thereafter, CNT-doped clothes were stacked and densified by pyrocarbon via chemical vapor infiltration to fabrica...Carbon nanotubes(CNTs) were deposited uniformly on carbon cloth by electrophoretic deposition(EPD). Thereafter, CNT-doped clothes were stacked and densified by pyrocarbon via chemical vapor infiltration to fabricate two-dimensional(2 D) carbon/carbon(C/C) composites. Effects of EPD CNTs on interlaminar shear performance and mode Ⅱ interlaminar fracture toughness(GⅡc) of 2 D C/C composites were investigated. Results showed that EPD CNTs were uniformly covered on carbon fibers, acting as a porous coating. Such a CNT coating can obviously enhance the interlaminar shear strength and GⅡc of 2 D C/C composites. With increaing EPD CNTs, the interlaminar shear strength and GⅡc of 2 D C/C composites increase greatly and then decrease, both of which run up to their maximum values, i e, 13.6 MPa and 436.0 J·m-2, when the content of EPD CNTs is 0.54 wt%, 2.27 and 1.45 times of the baseline. Such improvements in interlaminar performance of 2 D C/C composites are mainly beneficial from their increased cohesion of interlaminar matrix, which is caused not only by the direct reinforcing effect of EPD CNT network but also by the capacity of EPD CNTs to refine pyrocarbon matrix and induce multilayered microstructures that greatly increase the crack propagation resistance through "crack-blocking and-deflecting mechanisms".展开更多
The catalytic performance of methane partial oxidation was investigated on Pd/CeO2-ZrO2 and Pd/α-Al2O3 catalysts.The catalysts were characterized by XRD,Raman spectra,and TG-DTA techniques.The results show that CeO2-...The catalytic performance of methane partial oxidation was investigated on Pd/CeO2-ZrO2 and Pd/α-Al2O3 catalysts.The catalysts were characterized by XRD,Raman spectra,and TG-DTA techniques.The results show that CeO2-ZrO2 support is more advantageous for the catalytic activity and stability of catalysts compared to α-Al2O3.TG-DTA and Raman spectra results indicated that carbon deposited on the catalysts was in the form of graphite,which is the main reason for the deactivation of catalysts after a 24-hour reaction.Moreover,CeO2-ZrO2 had positive effect on inhibiting carbon deposition.展开更多
The CO2reforming of CH4is studied over MgO‐promoted Ni catalysts,which were supported on alumina prepared from hydrotalcite.This presents an improved stability compared with non‐promoted catalysts.The introduction o...The CO2reforming of CH4is studied over MgO‐promoted Ni catalysts,which were supported on alumina prepared from hydrotalcite.This presents an improved stability compared with non‐promoted catalysts.The introduction of the MgO promoter was achieved through the‘‘memory effect’’of the Ni‐Al hydrotalcite structure,and ICP‐MS confirmed that only0.42wt.%of Mg2+ions were added into the Ni‐Mg/Al catalyst.Although no differences in the Ni particle size and basicity strength were observed,the Ni‐Mg/Al catalyst showed a higher catalytic stability than the Ni/Al catalyst.A series of surface reaction experiments were used and showed that the addition of a MgO promoter with low concentration can promote CO2dissociation to form active surface oxygen arising from the formation of the Ni‐MgO interface sites.Therefore,the carbon‐resistance promotion by nature was suggested to contribute to an oxidative environment around Ni particles,which would increase the conversion of carbon residues from CH4cracking to yield CO on the Ni metal surface.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.展开更多
In this topic, we first discussed the requirement and performance of supercapacitors using carbon nanotubes (CNTs) as the electrode, including specific surface area, purity and cost. Then we reviewed the preparation...In this topic, we first discussed the requirement and performance of supercapacitors using carbon nanotubes (CNTs) as the electrode, including specific surface area, purity and cost. Then we reviewed the preparation technique of single wailed CNTs (SWNTs) in relatively large scale by chemical vapor deposition method. Its catalysis on the decomposition of methane and other carbon source, the reactor type and the process control strategies were discussed. Special focus was concentrated on how to increase the yield, selectivity, and purity of SWNTs and how to inhibit the formation of impurities, including amorphous carbon, multiwalled CNTs and the carbon encapsulated metal particles, since these impurities seriously influenced the performance of SWNTs in supercapacitors. Wish it be helpful to further decrease its product cost and for the commercial use in supercapacitors.展开更多
Objective The Yubei area is located in the mid-east Maigaiti slope of southwestern Tarim Basin, China, with an exploration history of several years. Recent exploration has preliminarily indicated that the Ordovician ...Objective The Yubei area is located in the mid-east Maigaiti slope of southwestern Tarim Basin, China, with an exploration history of several years. Recent exploration has preliminarily indicated that the Ordovician carbonate formations in this area have some oil and gas potential. Carbonate microfacies provides material basis for reservoir development, seal formation and hydrocarbon generation. Therefore, this work utilized the standard microfacies (SMF) types to study the microfacies of the Ordovician formations in the Yubei area in order to provide theoretical basis for the next exploration.展开更多
In the present study,two Ni/YSZ anodes with different volume ratios of Ni and YSZ,30:70 and 45:55 vol%,are operated in dry methane under open circuit and polarized conditions.Three-dimensional(3D)Ni/YSZ microstructure...In the present study,two Ni/YSZ anodes with different volume ratios of Ni and YSZ,30:70 and 45:55 vol%,are operated in dry methane under open circuit and polarized conditions.Three-dimensional(3D)Ni/YSZ microstructures after carbon deposition are reconstructed by the focused ion beam-scanning electron microscopy(FIB-SEM)with the help of machine learning segmentation.From the reconstructed mircostructures,volume fraction,connectivity,three phase boundary(TPB)density,and tortuosity are quantified.In addition,local carbon microstructures are quantitatively reconstructed,and the effect of polarization on carbon morphology is investigated.It is demonstrated that Ni surface in the vicinity of active TPB near the electrolyte is free from carbon formation,while remaining Ni surface at some distances from TPB exhibits severe carbon deposition.In average,total amount of carbon deposition is larger near the electrolyte.These observations imply complex interplay between the electrochemical steam generation and methane cracking on Ni surface which take place very locally near the active TPB.展开更多
In this paper, the properties of carbon deposited on hexaaluminateLaNiAl_(11)O_(19) catalyst were characterized by X-ray photoelectron spectroscopy (XPS), and in themeantime, the amount of carbon deposited on the cata...In this paper, the properties of carbon deposited on hexaaluminateLaNiAl_(11)O_(19) catalyst were characterized by X-ray photoelectron spectroscopy (XPS), and in themeantime, the amount of carbon deposited on the catalyst, after both CH_4 decomposition and CO_2reforming of CH_4, was determined by means of thermogravimetric analysis (TGA), respectively. Therates of carbon deposited on the catalyst were also investigated and the apparent kinetic equationof CO_2 reforming of CH_4: ν_c = kp^(0.72)(CH_4)·p^(-0.55)(CO_2), was established by analyzing therelation between the rates of deposited carbon and the pressure ratio of CH_4 and CO_2.展开更多
The effect of temperature and hydrogen addition on undesired carbonaceous deposit formation during methane coupling was studied in DBD-plasma catalytic-wall reactors with Pd/Al2 O3, using electrical power to drive the...The effect of temperature and hydrogen addition on undesired carbonaceous deposit formation during methane coupling was studied in DBD-plasma catalytic-wall reactors with Pd/Al2 O3, using electrical power to drive the reaction.Experiments with thin catalyst layers allowed comparison of the performance of empty reactors and catalytic wall reactors without significantly influencing the plasma properties.The product distribution varies strongly in the temperature window between 25 and 200℃Minimal formation of deposits is found at an optimal temperature around 75℃ in the catalytic-wall reactors.The selectivity to deposits was c.a.10% with only 9 mg of catalyst loading instead of 45% in the blank reactor,while decreasing methane conversion only mildly.Co-feeding H2 to an empty reactor causes a similar decrease in selectivity to deposits,but in this case methane conversion also decreased significantly.Suppression of deposits formation in the catalytic-wall reactor at 75℃ is due to catalytic hydrogenation of mainly acetylene to ethylene.In the empty reactor,H2 co-feed decreases conversion but does not change the product distribution.The catalytic-wall reactors can be regenerated with H2-plasma at room temperature,which produces more added-value hydrocarbons.展开更多
Deposition of organic carbon forms the final net effect of the ocean carbon sink at a certain time scale. Organic carbon deposition on the Arctic shelves plays a particularly important role in the global carbon cycle ...Deposition of organic carbon forms the final net effect of the ocean carbon sink at a certain time scale. Organic carbon deposition on the Arctic shelves plays a particularly important role in the global carbon cycle because of the broad shelf area and rich nutrient concentration. To determine the organic carbon deposition flux at the northern margin of the Chukchi Sea shelf, the 210pb dating method was used to analyze the age and deposition rate of sediment samples from station R17 of the third Chinese National Arctic Research Expedition. The results showed that the deposition rate was 0.6 mm'aI, the apparent deposition mass flux was 0.72 kg.m2a1, and the organic carbon deposition flux was 517 mmol C.m2.al. It was estimated that at least 16% of the export organic carbon flux out of the euphoric zone was transferred and chronically buried into the sediment, a value which was much higher than the average ratio (-10%) for low- to mid-latitude regions, indicating a highly effective carbon sink at the northern mar- gin of the Chukchi Sea shelf. With the decrease of sea ice coverage caused by warming in the Arctic Ocean, it could be inferred that the Arctic shelves will play an increasingly important role in the global carbon cycle.展开更多
Amorphous hydrogenated carbon thin films have been deposited with benzene plasma in an electron cyclotron resonance (ECR) plasma enhanced chemical vapor deposition system. The characteristic of Benzene discharge plas...Amorphous hydrogenated carbon thin films have been deposited with benzene plasma in an electron cyclotron resonance (ECR) plasma enhanced chemical vapor deposition system. The characteristic of Benzene discharge plasma has been monitored by Mast spectrometry. It shows that the majority of the plasma species in the downstream ECR Plasma with benzene as gas source are acetylene, ethylene and higher mass species. In the experiments, the effects of the substrate temperature on the deposition rates have been emphatically studied. The structures of the films were analyzed by FTIR and Ramam spectrum.The results show that when the substrate temperature rises, the deposition rate drops down, the hydrogen Foment decreases, with the higher SP3 content being presented in the film.展开更多
A-C:F, H film have been studied because of their low dielectric constant for application in interlayer dielectric in ULSC. These films were deposited by ECR plasma Reactor with CHF3 and C6H6 mixture as source gas. Th...A-C:F, H film have been studied because of their low dielectric constant for application in interlayer dielectric in ULSC. These films were deposited by ECR plasma Reactor with CHF3 and C6H6 mixture as source gas. The effects of microwave power, pressure and CHF3/C6H6 ratios on the film deposition rates have been investigated. The fluorocarbon and hydrocarbon radical species in the plasma discharges were analyzed by using the optical emission spectra. It demonstrates that CF2, CF and CH radicals play the important roles in the films being formed.展开更多
Carbon deposition on nickel powders in methane involves three stages in different reaction temperature ranges. Temperature programing oxidation test and Raman spectrum results indicated the formation of complex and or...Carbon deposition on nickel powders in methane involves three stages in different reaction temperature ranges. Temperature programing oxidation test and Raman spectrum results indicated the formation of complex and ordered carbon structures at high deposition temperatures. The values of I(D)/I(G) of the deposited carbon reached 1.86, 1.30, and 1.22 in the first, second, and third stages, respectively. The structure of carbon in the second stage was similar to that in the third stage. Carbon deposited in the first stage rarely contained homogeneous pyrolytic deposit layers. A kinetic model was developed to analyze the carbon deposition behavior in the first stage. The rate-determining step of the first stage is supposed to be interfacial reaction. Based on the investigation of carbon deposition kinetics on nickel powders from different resources, carbon deposition rate is suggested to have a linear relation with the square of specific surface area of nickel particles.展开更多
Ni-containing carbon films were prepared by rf glow discharge decomposition of methane and nickel carbonyl. The deposited des contained C, Ni, H, O and small amounts of N. Nickel existed in forms of metric Ni and Ni2O...Ni-containing carbon films were prepared by rf glow discharge decomposition of methane and nickel carbonyl. The deposited des contained C, Ni, H, O and small amounts of N. Nickel existed in forms of metric Ni and Ni2O3. The oxidation of nickel mainly occurred on film surface. With lower Ni contents, the film maintained the structure of DLC film. With the increase of Ni content, the films showed some crystalline features of Ni and Ni2O3.展开更多
The Ni/Mo/SBA-15 catalyst was modified by La2O3 in order to improve its thermal stability and carbon deposition resistance during the CO2 reforming of methane to syngas. The catalytic performance, thermal stability, s...The Ni/Mo/SBA-15 catalyst was modified by La2O3 in order to improve its thermal stability and carbon deposition resistance during the CO2 reforming of methane to syngas. The catalytic performance, thermal stability, structure, dispersion of nickel and carbon deposition of the modified and unmodified catalysts were comparatively investigated by many characterization techniques such as N2 adsorption, H2-TPR, CO2-TPD, XRD, FT-IR and SEM. It was found that the major role of La2O3 additive was to improve the pore structure and inhibit carbon deposition on the catalyst surface. The La2O3 modified Ni/Mo/SBA-15 catalyst possessed a mesoporous structure and high surface area. The high surface area of the La2O3 modified catalysts resulted in strong interaction between Ni and Mo-La, which improved the dispersion of Ni, and retarded the sintering of Ni during the CO2 reforming process. The reaction evaluation results also showed that the La2O3 modified Ni/Mo/SBA-15 catalysts exhibited high stability.展开更多
Thermodynamic analysis was applied to study combined partial oxidation and carbon dioxide reforming of methane in view of carbon formation. The equilibrium calculations employing the Gibbs energy minimization were per...Thermodynamic analysis was applied to study combined partial oxidation and carbon dioxide reforming of methane in view of carbon formation. The equilibrium calculations employing the Gibbs energy minimization were performed upon wide ranges of pressure (1-25 atm), temperature (600-1300 K), carbon dioxide to methane ratio (0-2) and oxygen to methane ratio (0-1). The thermodynamic results were compared with the results obtained over a Ru supported catalyst. The results revealed that by increasing the reaction pressure methane conversion decreased. Also it was found that the atmospheric pressure is the preferable pressure for both dry reforming and partial oxidation of methane and increasing the temperature caused increases in both activity of carbon and conversion of methane. The results clearly showed that the addition of O2 to the feed mixture could lead to a reduction of carbon deposition.展开更多
The carbon deposition behavior on nickel particles was observed within the temperature range from 400 to 800°C in a pure methane atmosphere. The topography, properties, and molecular structure of the deposited ca...The carbon deposition behavior on nickel particles was observed within the temperature range from 400 to 800°C in a pure methane atmosphere. The topography, properties, and molecular structure of the deposited carbon were investigated using field-emission scanning electron microscopy (FESEM), temperature-programmed oxidation (TPO) technology, X-ray diffraction (XRD), and Raman spectroscopy. The deposited carbon is present in the form of a film at 400-450°C, as fibers at 500-600°C, and as particles at 650-800°C. In addition, the structure of the deposited carbon becomes more ordered at higher temperatures because both the TPO peak temperature of deposited carbon and the Raman shift of the G band increase with the increase in experimental temperature, whereas the intensity ratio between the D bands and the G band decreases. An interesting observation is that the carbon deposition rate is suppressed in the medium-temperature range (M-T range) and the corresponding kinetic mechanism changes. Correspondingly, the FWHM of the G and D1 bands in the Raman spectrum reaches a maximum and the intensities of the D2, D3, and D4 bands decrease to low limits in the M-T range. These results indicate that carbon structure parameters exhibit two different tendencies with respect to varying temperature. Both of the two group parameters change dramatically as a peak function with increasing reaction temperature within the M-T range.展开更多
To improve the‘detonation-supporting’performance of fuel-rich catalytic combustion products,DBD plasma,stimulated by adjustable nanosecond pulse power supply,was used to further regulate the components and concentra...To improve the‘detonation-supporting’performance of fuel-rich catalytic combustion products,DBD plasma,stimulated by adjustable nanosecond pulse power supply,was used to further regulate the components and concentrations of the hydrocarbon blends.In this paper,the parameters including load voltage,frequency,rising(falling)edge,pulse width and feeding flow rate were changed respectively,and the corresponding concentration and proportion change of the components in blend gas were investigated.According to the experiment result,it was found that when the discharge frequency is low,the plasma mainly promotes the transformation of light gaseous substances,while it mainly promotes the conversion to heavy hydrocarbons when the frequency is larger.Increasing load voltage will strengthen this trend.The controlling and reforming effect of plasma on the blend gas will decrease with the increase of voltage rising(falling)edge and the feeding flow rate.The regulation effect will be strengthened with the increase of pulse width under 200 ns.With the increase of discharge intensity,the‘carbon’settles on the walls of the reactor,which will change the dielectric constant,leading to the loss of control of the discharge.展开更多
In the present work,an interconnected sandwich carbon/Si-SiO2/carbon nanospheres composite was prepared by template method and carbon thermal vapor deposition(TVD).The carbon conductive layer can not only efficientl...In the present work,an interconnected sandwich carbon/Si-SiO2/carbon nanospheres composite was prepared by template method and carbon thermal vapor deposition(TVD).The carbon conductive layer can not only efficiently improve the electronic conductivity of Si-based anode,but also play a key role in alleviating the negative effect from huge volume expansion over discharge/charge of Si-based anode.The resulting material delivered a reversible capacity of 1094 mAh/g,and exhibited excellent cycling stability.It kept a reversible capacity of 1050 mAh/g over 200 cycles with a capacity retention of 96%.展开更多
Carbon deposits were formed on the reactor wall during plasma pyrolysis of the Xinjiang candle coal in our V-style plasma pyrolysis pilot-plant. The carbon deposits were studied using a scanning electronic microscope ...Carbon deposits were formed on the reactor wall during plasma pyrolysis of the Xinjiang candle coal in our V-style plasma pyrolysis pilot-plant. The carbon deposits were studied using a scanning electronic microscope (SEM) and the X-ray diffraction (XRD) method. It was found that carbon deposits located at different parts in the reactor exhibited different microscopic patterns. The formation mechanism of the carbon deposits was deduced. The downward increase in the graphitization degree of the carbon deposits was found and interpreted.展开更多
Newly-acquired seismic data reveal widespread carbonate deposits covering a large part of the northwestern South China Sea margin.Three carbonate platforms are identified to have developed on the topographic highs inh...Newly-acquired seismic data reveal widespread carbonate deposits covering a large part of the northwestern South China Sea margin.Three carbonate platforms are identified to have developed on the topographic highs inherited from tectonic deformation and volcanic accretion.Across the carbonate platforms,the Miocene strata are characterized by high-amplitude seismic reflections and distinct platform architecture that overlaps older strata.The Guangle and Xisha carbonate platforms grew on faulted blocks due to South China Sea continental rifting,while the Zhongjian carbonate platform developed on a structural high induced by early Miocene volcanism.During the late Miocene,partial drowning resulted in the inhibition of platform growth,eventual platform drowning and termination of most carbonate deposition.The drowning of the Guangle and Zhongjian carbonate platforms is shown by the supply of siliciclastic sediments during the late Miocene and seems to be closely linked to late Neogene volcanic activity,whilst the drowning of the Xisha carbonate platform is primarily related to relative eustatic changes.Our results imply that tectonic activity,volcanism and eustasy are the dominant controls on the evolution of carbonate platforms on the northwestern margin of the South China Sea.展开更多
基金Funded by the National Natural Science Foundation of China(Nos.51432008,51202194 and 51502242)the Fund of the State Key Laboratory of Solidification Processing in NWPU(No.SKLSP201637)the Key Grant Project of the Chinese Ministry of Education(No.313047)
文摘Carbon nanotubes(CNTs) were deposited uniformly on carbon cloth by electrophoretic deposition(EPD). Thereafter, CNT-doped clothes were stacked and densified by pyrocarbon via chemical vapor infiltration to fabricate two-dimensional(2 D) carbon/carbon(C/C) composites. Effects of EPD CNTs on interlaminar shear performance and mode Ⅱ interlaminar fracture toughness(GⅡc) of 2 D C/C composites were investigated. Results showed that EPD CNTs were uniformly covered on carbon fibers, acting as a porous coating. Such a CNT coating can obviously enhance the interlaminar shear strength and GⅡc of 2 D C/C composites. With increaing EPD CNTs, the interlaminar shear strength and GⅡc of 2 D C/C composites increase greatly and then decrease, both of which run up to their maximum values, i e, 13.6 MPa and 436.0 J·m-2, when the content of EPD CNTs is 0.54 wt%, 2.27 and 1.45 times of the baseline. Such improvements in interlaminar performance of 2 D C/C composites are mainly beneficial from their increased cohesion of interlaminar matrix, which is caused not only by the direct reinforcing effect of EPD CNT network but also by the capacity of EPD CNTs to refine pyrocarbon matrix and induce multilayered microstructures that greatly increase the crack propagation resistance through "crack-blocking and-deflecting mechanisms".
基金Project supported by the National‘973’Project(2004CB719503)Petro China(W050509-01-05)
文摘The catalytic performance of methane partial oxidation was investigated on Pd/CeO2-ZrO2 and Pd/α-Al2O3 catalysts.The catalysts were characterized by XRD,Raman spectra,and TG-DTA techniques.The results show that CeO2-ZrO2 support is more advantageous for the catalytic activity and stability of catalysts compared to α-Al2O3.TG-DTA and Raman spectra results indicated that carbon deposited on the catalysts was in the form of graphite,which is the main reason for the deactivation of catalysts after a 24-hour reaction.Moreover,CeO2-ZrO2 had positive effect on inhibiting carbon deposition.
基金supported by the National Natural Science Fundation of China(U1361202,51276120)~~
文摘The CO2reforming of CH4is studied over MgO‐promoted Ni catalysts,which were supported on alumina prepared from hydrotalcite.This presents an improved stability compared with non‐promoted catalysts.The introduction of the MgO promoter was achieved through the‘‘memory effect’’of the Ni‐Al hydrotalcite structure,and ICP‐MS confirmed that only0.42wt.%of Mg2+ions were added into the Ni‐Mg/Al catalyst.Although no differences in the Ni particle size and basicity strength were observed,the Ni‐Mg/Al catalyst showed a higher catalytic stability than the Ni/Al catalyst.A series of surface reaction experiments were used and showed that the addition of a MgO promoter with low concentration can promote CO2dissociation to form active surface oxygen arising from the formation of the Ni‐MgO interface sites.Therefore,the carbon‐resistance promotion by nature was suggested to contribute to an oxidative environment around Ni particles,which would increase the conversion of carbon residues from CH4cracking to yield CO on the Ni metal surface.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.
基金financially supported by the National Basic Research Program of China (2011CB932602)the NSFC Key Program (20736007,20736004)the Foundation of Tsinghua University (2011THZ08,new energy)
文摘In this topic, we first discussed the requirement and performance of supercapacitors using carbon nanotubes (CNTs) as the electrode, including specific surface area, purity and cost. Then we reviewed the preparation technique of single wailed CNTs (SWNTs) in relatively large scale by chemical vapor deposition method. Its catalysis on the decomposition of methane and other carbon source, the reactor type and the process control strategies were discussed. Special focus was concentrated on how to increase the yield, selectivity, and purity of SWNTs and how to inhibit the formation of impurities, including amorphous carbon, multiwalled CNTs and the carbon encapsulated metal particles, since these impurities seriously influenced the performance of SWNTs in supercapacitors. Wish it be helpful to further decrease its product cost and for the commercial use in supercapacitors.
基金funded by the National Natural Science Foundation of China(grant No.41572117)Technological&Developmental Department of China Petroleum&Chemical Corporation(grants No.P13040 and P14128)China Geological Survey(grant No.DD20160175-1-1)
文摘Objective The Yubei area is located in the mid-east Maigaiti slope of southwestern Tarim Basin, China, with an exploration history of several years. Recent exploration has preliminarily indicated that the Ordovician carbonate formations in this area have some oil and gas potential. Carbonate microfacies provides material basis for reservoir development, seal formation and hydrocarbon generation. Therefore, this work utilized the standard microfacies (SMF) types to study the microfacies of the Ordovician formations in the Yubei area in order to provide theoretical basis for the next exploration.
基金partly supported by the New Energy and Industrial Technology Development Organization(NEDO)by the Japan Society for the Promotion of Science KAKENHI(21K14090)+3 种基金the National Key R&D Program of China(2019YFE0122000)the Scientific Research Foundation of Graduate School of Southeast University(YBPY2106)the China Scholarship Councilby the Advanced Research Infrastructure for Materials and Nanotechnology in Japan(ARIM Japan)sponsored by the Ministry of Education,Culture,Sport,Science and Technology(MEXT),Japan。
文摘In the present study,two Ni/YSZ anodes with different volume ratios of Ni and YSZ,30:70 and 45:55 vol%,are operated in dry methane under open circuit and polarized conditions.Three-dimensional(3D)Ni/YSZ microstructures after carbon deposition are reconstructed by the focused ion beam-scanning electron microscopy(FIB-SEM)with the help of machine learning segmentation.From the reconstructed mircostructures,volume fraction,connectivity,three phase boundary(TPB)density,and tortuosity are quantified.In addition,local carbon microstructures are quantitatively reconstructed,and the effect of polarization on carbon morphology is investigated.It is demonstrated that Ni surface in the vicinity of active TPB near the electrolyte is free from carbon formation,while remaining Ni surface at some distances from TPB exhibits severe carbon deposition.In average,total amount of carbon deposition is larger near the electrolyte.These observations imply complex interplay between the electrochemical steam generation and methane cracking on Ni surface which take place very locally near the active TPB.
文摘In this paper, the properties of carbon deposited on hexaaluminateLaNiAl_(11)O_(19) catalyst were characterized by X-ray photoelectron spectroscopy (XPS), and in themeantime, the amount of carbon deposited on the catalyst, after both CH_4 decomposition and CO_2reforming of CH_4, was determined by means of thermogravimetric analysis (TGA), respectively. Therates of carbon deposited on the catalyst were also investigated and the apparent kinetic equationof CO_2 reforming of CH_4: ν_c = kp^(0.72)(CH_4)·p^(-0.55)(CO_2), was established by analyzing therelation between the rates of deposited carbon and the pressure ratio of CH_4 and CO_2.
基金supported by the Innovation Fund for Chemistry of NWO,grant number 731.014.303by SASOL。
文摘The effect of temperature and hydrogen addition on undesired carbonaceous deposit formation during methane coupling was studied in DBD-plasma catalytic-wall reactors with Pd/Al2 O3, using electrical power to drive the reaction.Experiments with thin catalyst layers allowed comparison of the performance of empty reactors and catalytic wall reactors without significantly influencing the plasma properties.The product distribution varies strongly in the temperature window between 25 and 200℃Minimal formation of deposits is found at an optimal temperature around 75℃ in the catalytic-wall reactors.The selectivity to deposits was c.a.10% with only 9 mg of catalyst loading instead of 45% in the blank reactor,while decreasing methane conversion only mildly.Co-feeding H2 to an empty reactor causes a similar decrease in selectivity to deposits,but in this case methane conversion also decreased significantly.Suppression of deposits formation in the catalytic-wall reactor at 75℃ is due to catalytic hydrogenation of mainly acetylene to ethylene.In the empty reactor,H2 co-feed decreases conversion but does not change the product distribution.The catalytic-wall reactors can be regenerated with H2-plasma at room temperature,which produces more added-value hydrocarbons.
基金supported by the Scientific Research Foundation of the Third Institute of Oceanography, SOA (Grant nos. 2011024 and 2011025)the Marine Science Youth Fund of SOA (Grant no. 2012107)
文摘Deposition of organic carbon forms the final net effect of the ocean carbon sink at a certain time scale. Organic carbon deposition on the Arctic shelves plays a particularly important role in the global carbon cycle because of the broad shelf area and rich nutrient concentration. To determine the organic carbon deposition flux at the northern margin of the Chukchi Sea shelf, the 210pb dating method was used to analyze the age and deposition rate of sediment samples from station R17 of the third Chinese National Arctic Research Expedition. The results showed that the deposition rate was 0.6 mm'aI, the apparent deposition mass flux was 0.72 kg.m2a1, and the organic carbon deposition flux was 517 mmol C.m2.al. It was estimated that at least 16% of the export organic carbon flux out of the euphoric zone was transferred and chronically buried into the sediment, a value which was much higher than the average ratio (-10%) for low- to mid-latitude regions, indicating a highly effective carbon sink at the northern mar- gin of the Chukchi Sea shelf. With the decrease of sea ice coverage caused by warming in the Arctic Ocean, it could be inferred that the Arctic shelves will play an increasingly important role in the global carbon cycle.
基金Nature Science Foundation of Jiangsu Province, P.R.China
文摘Amorphous hydrogenated carbon thin films have been deposited with benzene plasma in an electron cyclotron resonance (ECR) plasma enhanced chemical vapor deposition system. The characteristic of Benzene discharge plasma has been monitored by Mast spectrometry. It shows that the majority of the plasma species in the downstream ECR Plasma with benzene as gas source are acetylene, ethylene and higher mass species. In the experiments, the effects of the substrate temperature on the deposition rates have been emphatically studied. The structures of the films were analyzed by FTIR and Ramam spectrum.The results show that when the substrate temperature rises, the deposition rate drops down, the hydrogen Foment decreases, with the higher SP3 content being presented in the film.
文摘A-C:F, H film have been studied because of their low dielectric constant for application in interlayer dielectric in ULSC. These films were deposited by ECR plasma Reactor with CHF3 and C6H6 mixture as source gas. The effects of microwave power, pressure and CHF3/C6H6 ratios on the film deposition rates have been investigated. The fluorocarbon and hydrocarbon radical species in the plasma discharges were analyzed by using the optical emission spectra. It demonstrates that CF2, CF and CH radicals play the important roles in the films being formed.
基金financially supported by the National Program on Key Basic Research Project of China (973 Program, No. 2012CB215405)the National Natural Science Foundation of China (No. 51174022)
文摘Carbon deposition on nickel powders in methane involves three stages in different reaction temperature ranges. Temperature programing oxidation test and Raman spectrum results indicated the formation of complex and ordered carbon structures at high deposition temperatures. The values of I(D)/I(G) of the deposited carbon reached 1.86, 1.30, and 1.22 in the first, second, and third stages, respectively. The structure of carbon in the second stage was similar to that in the third stage. Carbon deposited in the first stage rarely contained homogeneous pyrolytic deposit layers. A kinetic model was developed to analyze the carbon deposition behavior in the first stage. The rate-determining step of the first stage is supposed to be interfacial reaction. Based on the investigation of carbon deposition kinetics on nickel powders from different resources, carbon deposition rate is suggested to have a linear relation with the square of specific surface area of nickel particles.
文摘Ni-containing carbon films were prepared by rf glow discharge decomposition of methane and nickel carbonyl. The deposited des contained C, Ni, H, O and small amounts of N. Nickel existed in forms of metric Ni and Ni2O3. The oxidation of nickel mainly occurred on film surface. With lower Ni contents, the film maintained the structure of DLC film. With the increase of Ni content, the films showed some crystalline features of Ni and Ni2O3.
基金supported by the Key Project of Chinese National Programs for Fundamental Research and Development(973 Program 2005CB221204)the Natural Science Fund of China(20676087)
文摘The Ni/Mo/SBA-15 catalyst was modified by La2O3 in order to improve its thermal stability and carbon deposition resistance during the CO2 reforming of methane to syngas. The catalytic performance, thermal stability, structure, dispersion of nickel and carbon deposition of the modified and unmodified catalysts were comparatively investigated by many characterization techniques such as N2 adsorption, H2-TPR, CO2-TPD, XRD, FT-IR and SEM. It was found that the major role of La2O3 additive was to improve the pore structure and inhibit carbon deposition on the catalyst surface. The La2O3 modified Ni/Mo/SBA-15 catalyst possessed a mesoporous structure and high surface area. The high surface area of the La2O3 modified catalysts resulted in strong interaction between Ni and Mo-La, which improved the dispersion of Ni, and retarded the sintering of Ni during the CO2 reforming process. The reaction evaluation results also showed that the La2O3 modified Ni/Mo/SBA-15 catalysts exhibited high stability.
基金supported by University of Kashan(Grant No.158426/5)
文摘Thermodynamic analysis was applied to study combined partial oxidation and carbon dioxide reforming of methane in view of carbon formation. The equilibrium calculations employing the Gibbs energy minimization were performed upon wide ranges of pressure (1-25 atm), temperature (600-1300 K), carbon dioxide to methane ratio (0-2) and oxygen to methane ratio (0-1). The thermodynamic results were compared with the results obtained over a Ru supported catalyst. The results revealed that by increasing the reaction pressure methane conversion decreased. Also it was found that the atmospheric pressure is the preferable pressure for both dry reforming and partial oxidation of methane and increasing the temperature caused increases in both activity of carbon and conversion of methane. The results clearly showed that the addition of O2 to the feed mixture could lead to a reduction of carbon deposition.
基金financially supported by the National Program on Key Basic Research Project of China(No.2012CB215405)the China Postdoctoral Science Foundation(No.2015M570036)the National Natural Science Foundation of China(No.51174022)
文摘The carbon deposition behavior on nickel particles was observed within the temperature range from 400 to 800°C in a pure methane atmosphere. The topography, properties, and molecular structure of the deposited carbon were investigated using field-emission scanning electron microscopy (FESEM), temperature-programmed oxidation (TPO) technology, X-ray diffraction (XRD), and Raman spectroscopy. The deposited carbon is present in the form of a film at 400-450°C, as fibers at 500-600°C, and as particles at 650-800°C. In addition, the structure of the deposited carbon becomes more ordered at higher temperatures because both the TPO peak temperature of deposited carbon and the Raman shift of the G band increase with the increase in experimental temperature, whereas the intensity ratio between the D bands and the G band decreases. An interesting observation is that the carbon deposition rate is suppressed in the medium-temperature range (M-T range) and the corresponding kinetic mechanism changes. Correspondingly, the FWHM of the G and D1 bands in the Raman spectrum reaches a maximum and the intensities of the D2, D3, and D4 bands decrease to low limits in the M-T range. These results indicate that carbon structure parameters exhibit two different tendencies with respect to varying temperature. Both of the two group parameters change dramatically as a peak function with increasing reaction temperature within the M-T range.
基金supported by National Natural Science Foundation of China(Nos.91941105,91941301,51790511)。
文摘To improve the‘detonation-supporting’performance of fuel-rich catalytic combustion products,DBD plasma,stimulated by adjustable nanosecond pulse power supply,was used to further regulate the components and concentrations of the hydrocarbon blends.In this paper,the parameters including load voltage,frequency,rising(falling)edge,pulse width and feeding flow rate were changed respectively,and the corresponding concentration and proportion change of the components in blend gas were investigated.According to the experiment result,it was found that when the discharge frequency is low,the plasma mainly promotes the transformation of light gaseous substances,while it mainly promotes the conversion to heavy hydrocarbons when the frequency is larger.Increasing load voltage will strengthen this trend.The controlling and reforming effect of plasma on the blend gas will decrease with the increase of voltage rising(falling)edge and the feeding flow rate.The regulation effect will be strengthened with the increase of pulse width under 200 ns.With the increase of discharge intensity,the‘carbon’settles on the walls of the reactor,which will change the dielectric constant,leading to the loss of control of the discharge.
基金supported by the State Key Basic Research Program of PRC(2011CB935903)the National Natural Science Foundation of China(No.20925312)Shanghai Science Technology Committee(13JC1407900)
文摘In the present work,an interconnected sandwich carbon/Si-SiO2/carbon nanospheres composite was prepared by template method and carbon thermal vapor deposition(TVD).The carbon conductive layer can not only efficiently improve the electronic conductivity of Si-based anode,but also play a key role in alleviating the negative effect from huge volume expansion over discharge/charge of Si-based anode.The resulting material delivered a reversible capacity of 1094 mAh/g,and exhibited excellent cycling stability.It kept a reversible capacity of 1050 mAh/g over 200 cycles with a capacity retention of 96%.
文摘Carbon deposits were formed on the reactor wall during plasma pyrolysis of the Xinjiang candle coal in our V-style plasma pyrolysis pilot-plant. The carbon deposits were studied using a scanning electronic microscope (SEM) and the X-ray diffraction (XRD) method. It was found that carbon deposits located at different parts in the reactor exhibited different microscopic patterns. The formation mechanism of the carbon deposits was deduced. The downward increase in the graphitization degree of the carbon deposits was found and interpreted.
基金funded by the National Science and Technology Major Project“The evaluations of deepwater oil and gas geological conditions and targets in Zhongjian area of the South China Sea”(No.2017ZX05026006)the CNPC Science and Technology Major Projects(No.2019A-1009&2019D4309)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA13010101)National Natural Science Foundation of China(No.41706054)。
文摘Newly-acquired seismic data reveal widespread carbonate deposits covering a large part of the northwestern South China Sea margin.Three carbonate platforms are identified to have developed on the topographic highs inherited from tectonic deformation and volcanic accretion.Across the carbonate platforms,the Miocene strata are characterized by high-amplitude seismic reflections and distinct platform architecture that overlaps older strata.The Guangle and Xisha carbonate platforms grew on faulted blocks due to South China Sea continental rifting,while the Zhongjian carbonate platform developed on a structural high induced by early Miocene volcanism.During the late Miocene,partial drowning resulted in the inhibition of platform growth,eventual platform drowning and termination of most carbonate deposition.The drowning of the Guangle and Zhongjian carbonate platforms is shown by the supply of siliciclastic sediments during the late Miocene and seems to be closely linked to late Neogene volcanic activity,whilst the drowning of the Xisha carbonate platform is primarily related to relative eustatic changes.Our results imply that tectonic activity,volcanism and eustasy are the dominant controls on the evolution of carbonate platforms on the northwestern margin of the South China Sea.