Atmospheric nitrogen (hi) deposition is currently high and meanwhile diffuse N pollution is also serious in China. The correlation between N deposition and riverine N export and the contribution of N deposition to r...Atmospheric nitrogen (hi) deposition is currently high and meanwhile diffuse N pollution is also serious in China. The correlation between N deposition and riverine N export and the contribution of N deposition to riverine N export were investigated in a typical hilly red soil catchment in southern China over a two-year period. N deposition was as high as 26.1 to 55.8 kg N/(ha-yr) across different land uses in the studied catchment, while the riverine N exports ranged from 7.2 to 9.6 kg N/(ha-yr) in the forest sub-catchment and 27.4 to 30.3 kg N/(ha.yr) in the agricultural sub-catchment. The correlations between both wet N deposition and riverine N export and precipitation were highly positive, and so were the correlations between NH-N or NO2-N wet deposition and riverine NH4-N or NO3-N exports except for NH-N in the agricultural sub-catchment, indicating that N deposition contributed to riverine N export. The monthly export coefficients of atmospheric deposited N from land to river in the forest sub-catchment (with a mean of 14%) presented a significant positive correlation With precipitation, while the monthly contributions of atmospheric deposition to riverine N export (with a mean of 18.7% in the agricultural sub-catchment and a mean of 21.0% in the whole catchment) were significantly and negatively correlated with precipitation. The relatively high contribution of N deposition to diffuse N pollution in the catchment suggests that efforts should be done to control anthropogenic reactive N emissions to the atmosphere in hilly red soil regions in southern China.展开更多
基金supported by the National Basic Research Program (973) of China (No.2012CB417105)the Key Deployment Program of the Chinese Academy of Sciences (No.KZZD-EW-11)+1 种基金the 100-Talents Program of the Chinese Academy of Sciences for Dr.Yong Lithe National Natural Science Foundation of China (Nos.41101247 and 41071151)
文摘Atmospheric nitrogen (hi) deposition is currently high and meanwhile diffuse N pollution is also serious in China. The correlation between N deposition and riverine N export and the contribution of N deposition to riverine N export were investigated in a typical hilly red soil catchment in southern China over a two-year period. N deposition was as high as 26.1 to 55.8 kg N/(ha-yr) across different land uses in the studied catchment, while the riverine N exports ranged from 7.2 to 9.6 kg N/(ha-yr) in the forest sub-catchment and 27.4 to 30.3 kg N/(ha.yr) in the agricultural sub-catchment. The correlations between both wet N deposition and riverine N export and precipitation were highly positive, and so were the correlations between NH-N or NO2-N wet deposition and riverine NH4-N or NO3-N exports except for NH-N in the agricultural sub-catchment, indicating that N deposition contributed to riverine N export. The monthly export coefficients of atmospheric deposited N from land to river in the forest sub-catchment (with a mean of 14%) presented a significant positive correlation With precipitation, while the monthly contributions of atmospheric deposition to riverine N export (with a mean of 18.7% in the agricultural sub-catchment and a mean of 21.0% in the whole catchment) were significantly and negatively correlated with precipitation. The relatively high contribution of N deposition to diffuse N pollution in the catchment suggests that efforts should be done to control anthropogenic reactive N emissions to the atmosphere in hilly red soil regions in southern China.