期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Properties of deproteinized bone for reparation of big segmental defect in long bone 被引量:5
1
作者 简月奎 田晓滨 +4 位作者 李波 邱冰 周焯家 杨震 李起鸿 《Chinese Journal of Traumatology》 CAS 2008年第3期152-156,共5页
Objective: To explore suitable scaffold material for big segmental long bone defect by studying the properties of the prepared deproteinized bone. Methods: Cancellated bone were made as 30 mm × 3 mm × 3 m... Objective: To explore suitable scaffold material for big segmental long bone defect by studying the properties of the prepared deproteinized bone. Methods: Cancellated bone were made as 30 mm × 3 mm × 3 mm bone blocks from inferior extremity of pig femur along bone trabecula. The deproteinized bone was prepared with an improved method. Their morphological features, components, cell compatibility, mechanical and immunological properties were investigated respectively. Results: Deproteinized bone maintained natural re-ticular pore system. The main organic material is collagen I and inorganic composition is hydroxyapatite. It has good mechanical properties, cell adhesion rate and histocompatibility. Conlusion: This deproteinized bone can be applicable as scaffold for reparation of big segmental defect in long bone. 展开更多
关键词 deproteinized bone Long bone bone defect
原文传递
Biomechanical researches on tissue engineering bone constructed by deproteinated bone 被引量:3
2
作者 简月奎 田晓滨 +5 位作者 李起鸿 李波 彭智 赵伟峰 王远政 杨震 《Chinese Journal of Traumatology》 CAS 2010年第1期32-36,共5页
Objective: To study biomechanical changes of newly formed bones 24 weeks after repairing large defects of long bones of goats using heterogeneous deproteinated bone (DPB) prepared by modified methods as an engineer... Objective: To study biomechanical changes of newly formed bones 24 weeks after repairing large defects of long bones of goats using heterogeneous deproteinated bone (DPB) prepared by modified methods as an engineering scaffold. Methods: According to a fully randomized design, 18 goats were evenly divided into three groups: normal bone control group (Group A), autologous bone group (Group B) and experimental group (Group C). Each goat in Groups B and C were subjected to the periosteum and bone defect at middle-lower part of the right tibia (20% of the whole tibia in length), followed by autologous bone or DPB plus autolognus MSCs + rhBMP2 implantation, respectively and semi- ring slot fixation; while goats in Group A did not perform osteotomy. At 24 weeks after surgery, biomechanical tests were carried out on the tibias. Results: At 24 weeks after surgery, the results of anticompression test on tibias in three groups were recorded by a functional recorder presented as linear pressure-deformation curve. The shapes of the curves and their change tendency were similar among three groups. The ultimate pressure values were 10.74 MPa±1.23 MPa, 10. 11 MPa±1.35 MPa and 10.22 MPa±1.32 MPa and fracture compression rates were 26.82%±0.87%, 27.17%±0.75% and 28.22%±1.12% in Groups A, B and C, respectively. Comparisons of anti-compression ultimate pressures and fracture compression rates among three groups demonstrated no significant difference (PAB=0.415, PBC=0.494). Three-point antibend test on tibias was recorded as load-deformation curves, and the shapes of the curves and their change tendency were similar among three groups. The ultimate pressure values of the anti-bend test were 481.52 N±12.45 N, 478.34 N±14.68 N and 475.62 N±13.41 N and the fracture bend rates were 2.62 mm±0.12 mm, 2.61 mm±0.15 mm and 2.81 mm±0.13 mm in Groups A, B and C, respectively. There was no significant difference between groups (PAB=0.7, PBc=0.448). The ultimate anti-torsion torque values were 6.55 N.mi-0.25 N.m, 6.34 N'm^0.18 N'm and 6.42 N'm^0.21 N'm and fracture torsion rates were 29.51°±1.64°, 28.88±1.46° and 28.81°±1.33° in Groups A, B and C, respectively. There was no significant difference between groups (PAB=0.123, PBc=0.346). Conclusions: The biomechanical characteristics of newly formed bones from heterogeneous DPB for repairing large segmental long bone defect are comparable to those of normal bones and autologous bones. DPB has the potential for clinical usage as bone graft material. 展开更多
关键词 BIOMECHANICS Tissue engineering Deproteinated bone
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部