期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Numerical analysis of submarine landslides using a smoothed particle hydrodynamics depth integral model 被引量:1
1
作者 WANG Zhongtao LI Xinzhong +1 位作者 LIU Peng TAO Yanqi 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第5期134-140,共7页
Submarine landslides can cause severe damage to marine engineering structures. Their sliding velocity and runout distance are two major parameters for quantifying and analyzing the risk of submarine landslides.Current... Submarine landslides can cause severe damage to marine engineering structures. Their sliding velocity and runout distance are two major parameters for quantifying and analyzing the risk of submarine landslides.Currently, commercial calculation programs such as BING have limitations in simulating underwater soil movements. All of these processes can be consistently simulated through a smoothed particle hydrodynamics(SPH) depth integrated model. The basis of the model is a control equation that was developed to take into account the effects of soil consolidation and erosion. In this work, the frictional rheological mode has been used to perform a simulation study of submarine landslides. Time-history curves of the sliding body's velocity, height,and length under various conditions of water depth, slope gradient, contact friction coefficient, and erosion rate are compared; the maximum sliding distance and velocity are calculated; and patterns of variation are discussed.The findings of this study can provide a reference for disaster warnings and pipeline route selection. 展开更多
关键词 sliding velocity runout distance smoothed particle hydrodynamics depth integral method frictional rheological model erosion effect
下载PDF
Assessment of Sediment Load of Langtang River in Rasuwa District, Nepal
2
作者 Aastha Chhetri Rijan B. Kayastha Ahuti Shrestha 《Journal of Water Resource and Protection》 2016年第1期84-92,共9页
This paper assesses the sediment load of the glacier fed Langtang River, Nepal from April 2014 to March 2015. Water samples were collected from the centre of the river with a frequency of two samples per each sampling... This paper assesses the sediment load of the glacier fed Langtang River, Nepal from April 2014 to March 2015. Water samples were collected from the centre of the river with a frequency of two samples per each sampling day using the Depth Integration Technique (DIT) on daily basis in the monsoon season, weekly in the pre- and post-monsoon seasons and bi-monthly in the winter season. Suspended sediment concentration (SSC) is calculated from the water samples using filtration followed by oven-drying, and a rating curve is used to calculate daily discharge of the Langtang River. The annual sediment yield is 109,276.75 tons and 37.69, 11.52 and 5.54 tons of sediment is transported per day in the pre-monsoon, post-monsoon and winter seasons, respectively. There is a very high value of 872.86 tons per day in the monsoon season, which contributes the highest sediment load among all of the seasons comprising 83% of the total sediment transport. Diurnal cycle of sediment discharge is clearly seen with higher sediment discharge during the evening than the morning and reaching maximum values of 41.1 kg·s<sup>-1</sup> and 61.5 kg·s<sup>-1</sup>, respectively. A clock-wise hysteresis loop has been obtained for discharge and sediment discharge where sediment flux is higher in the early monsoon than in the late monsoon for a corresponding discharge. 展开更多
关键词 Sediment Load SSC DISCHARGE depth integration Technique Langtang River
下载PDF
Phase-only hologram generation based on integral imaging and its enhancement in depth resolution
3
作者 Jiwoon Yeom Jisoo Hong +3 位作者 Jae-Hyun Jung Keehoon Hong Jae-Hyeung Park Byoungho Lee 《Chinese Optics Letters》 SCIE EI CAS CSCD 2011年第12期31-34,共4页
We introduce a phase-only hologram generation method based on an integral imaging, and propose an enhancement method in representable depth interval. The computational integral imaging reconstruction method is modifie... We introduce a phase-only hologram generation method based on an integral imaging, and propose an enhancement method in representable depth interval. The computational integral imaging reconstruction method is modified based on optical flow to obtain depth-slice images for the focused objects only. A phaseonly hologram for' multiple plane images is generated using the iterative Fresnel transform algorithm. In addition, a division method in hologram plane is proposed for enhancement in the representable minimum depth interval. 展开更多
关键词 CIIR Phase-only hologram generation based on integral imaging and its enhancement in depth resolution PSNR
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部