Snow depth is a general input variable in many models of agriculture,hydrology,climate and ecology.This study makes use of observational data of snow depth and explanatory variables to compare the accuracy and effect ...Snow depth is a general input variable in many models of agriculture,hydrology,climate and ecology.This study makes use of observational data of snow depth and explanatory variables to compare the accuracy and effect of geographically weighted regression kriging(GWRK)and regression kriging(RK)in a spatial interpolation of regional snow depth.The auxiliary variables are analyzed using correlation coefficients and the variance inflation factor(VIF).Three variables,Height,topographic ruggedness index(TRI),and land surface temperature(LST),are used as explanatory variables to establish a regression model for snow depth.The estimated spatial distribution of snow depth in the Bayanbulak Basin of the Tianshan Mountains in China with a spatial resolution of 1 km is obtained.The results indicate that 1)the result of GWRK's accuracy is slightly higher than that of RK(R^2=0.55 vs.R^2=0.50,RMSE(root mean square error)=0.102 m vs.RMSE=0.077 m);2)for the subareas,GWRK and RK exhibit similar estimation results of snow depth.Areas in the Bayanbulak Basin with a snow depth greater than 0.15m are mainly distributed in an elevation range of 2632.00–3269.00 m and the snow in this area comprises 45.00–46.00% of the total amount of snow in this basin.However,the GWRK resulted in more detailed information on snow depth distribution than the RK.The final conclusion is that GWRK is better suited for estimating regional snow depth distribution.展开更多
Bulk density(BD) is an important soil physical property and has significant effect on soil water conservation function. Indirect methods, which are called pedotransfer functions(PTFs), have replaced direct measurement...Bulk density(BD) is an important soil physical property and has significant effect on soil water conservation function. Indirect methods, which are called pedotransfer functions(PTFs), have replaced direct measurement and can acquire the missing data of BD during routine soil surveys. In this study, multiple linear regression(MLR) and artificial neuron network(ANN) methods were used to develop PTFs for predicting BD from soil organic carbon(OC), texture and depth in the Three-River Headwater region of Qinghai Province, China. The performances of the developed PTFs were compared with 14 published PTFs using four indexes, the mean error(ME), standard deviation error(SDE), root mean squared error(RMSE) and coefficient of determination(R^2). Results showed that the performances of published PTFs developed using exponential regression were better than those developed using linear regression from OC. Alexander(1980)-B, Alexander(1980)-A and Manrique and Jones(1991)-B PTFs, which had good predictions, could be applied for the soils in the study area. The PTFs developed using MLR(MLR-PTFs) and ANN(ANN-PTFs) had better soil BD predictions than most of published PTFs. The ANN-PTFs had better performances than the MLR-PTFs and their performances could be improved when soil texture and depth were added as predictor variables. The idea of developing PTFs for predicting soil BD in the study area could provide reference for other areas and the results could lay foundation for the estimation of soil water retention and carbon pool.展开更多
基金supported by Projects of International Cooperation and Exchanges NSFC (grant: 41361140361)the Special fund project of Chinese Academy of Sciences (grant: Y371164001)the key deployment project of Chinese Academy of Sciences (Grant No. KZZD-EW-12-2, KZZD-EW12-3)
文摘Snow depth is a general input variable in many models of agriculture,hydrology,climate and ecology.This study makes use of observational data of snow depth and explanatory variables to compare the accuracy and effect of geographically weighted regression kriging(GWRK)and regression kriging(RK)in a spatial interpolation of regional snow depth.The auxiliary variables are analyzed using correlation coefficients and the variance inflation factor(VIF).Three variables,Height,topographic ruggedness index(TRI),and land surface temperature(LST),are used as explanatory variables to establish a regression model for snow depth.The estimated spatial distribution of snow depth in the Bayanbulak Basin of the Tianshan Mountains in China with a spatial resolution of 1 km is obtained.The results indicate that 1)the result of GWRK's accuracy is slightly higher than that of RK(R^2=0.55 vs.R^2=0.50,RMSE(root mean square error)=0.102 m vs.RMSE=0.077 m);2)for the subareas,GWRK and RK exhibit similar estimation results of snow depth.Areas in the Bayanbulak Basin with a snow depth greater than 0.15m are mainly distributed in an elevation range of 2632.00–3269.00 m and the snow in this area comprises 45.00–46.00% of the total amount of snow in this basin.However,the GWRK resulted in more detailed information on snow depth distribution than the RK.The final conclusion is that GWRK is better suited for estimating regional snow depth distribution.
基金supported by the National Key Technology R&D Program of China(No.2009BAC61B01)the National Basic Research Program(973Program) of China(No.2012CB95570002)the Innovative Team(Investigation and Management for Agricultural Land Resource) of Predominant Science and Technology in Chinese Academy of Agricultural Engineering
文摘Bulk density(BD) is an important soil physical property and has significant effect on soil water conservation function. Indirect methods, which are called pedotransfer functions(PTFs), have replaced direct measurement and can acquire the missing data of BD during routine soil surveys. In this study, multiple linear regression(MLR) and artificial neuron network(ANN) methods were used to develop PTFs for predicting BD from soil organic carbon(OC), texture and depth in the Three-River Headwater region of Qinghai Province, China. The performances of the developed PTFs were compared with 14 published PTFs using four indexes, the mean error(ME), standard deviation error(SDE), root mean squared error(RMSE) and coefficient of determination(R^2). Results showed that the performances of published PTFs developed using exponential regression were better than those developed using linear regression from OC. Alexander(1980)-B, Alexander(1980)-A and Manrique and Jones(1991)-B PTFs, which had good predictions, could be applied for the soils in the study area. The PTFs developed using MLR(MLR-PTFs) and ANN(ANN-PTFs) had better soil BD predictions than most of published PTFs. The ANN-PTFs had better performances than the MLR-PTFs and their performances could be improved when soil texture and depth were added as predictor variables. The idea of developing PTFs for predicting soil BD in the study area could provide reference for other areas and the results could lay foundation for the estimation of soil water retention and carbon pool.