期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Spatial distribution of snow depth based on geographically weighted regression kriging in the Bayanbulak Basin of the Tianshan Mountains, China 被引量:5
1
作者 LIU Yang LI Lan-hai +2 位作者 CHEN Xi YANG Jin-Ming HAO Jian-Sheng 《Journal of Mountain Science》 SCIE CSCD 2018年第1期33-45,共13页
Snow depth is a general input variable in many models of agriculture,hydrology,climate and ecology.This study makes use of observational data of snow depth and explanatory variables to compare the accuracy and effect ... Snow depth is a general input variable in many models of agriculture,hydrology,climate and ecology.This study makes use of observational data of snow depth and explanatory variables to compare the accuracy and effect of geographically weighted regression kriging(GWRK)and regression kriging(RK)in a spatial interpolation of regional snow depth.The auxiliary variables are analyzed using correlation coefficients and the variance inflation factor(VIF).Three variables,Height,topographic ruggedness index(TRI),and land surface temperature(LST),are used as explanatory variables to establish a regression model for snow depth.The estimated spatial distribution of snow depth in the Bayanbulak Basin of the Tianshan Mountains in China with a spatial resolution of 1 km is obtained.The results indicate that 1)the result of GWRK's accuracy is slightly higher than that of RK(R^2=0.55 vs.R^2=0.50,RMSE(root mean square error)=0.102 m vs.RMSE=0.077 m);2)for the subareas,GWRK and RK exhibit similar estimation results of snow depth.Areas in the Bayanbulak Basin with a snow depth greater than 0.15m are mainly distributed in an elevation range of 2632.00–3269.00 m and the snow in this area comprises 45.00–46.00% of the total amount of snow in this basin.However,the GWRK resulted in more detailed information on snow depth distribution than the RK.The final conclusion is that GWRK is better suited for estimating regional snow depth distribution. 展开更多
关键词 Snow depth Spatial distribution regression kriging Geographically weighted regression kriging
下载PDF
Pedotransfer Functions for Estimating Soil Bulk Density:A Case Study in the Three-River Headwater Region of Qinghai Province,China 被引量:7
2
作者 YI Xiangsheng LI Guosheng YIN Yanyu 《Pedosphere》 SCIE CAS CSCD 2016年第3期362-373,共12页
Bulk density(BD) is an important soil physical property and has significant effect on soil water conservation function. Indirect methods, which are called pedotransfer functions(PTFs), have replaced direct measurement... Bulk density(BD) is an important soil physical property and has significant effect on soil water conservation function. Indirect methods, which are called pedotransfer functions(PTFs), have replaced direct measurement and can acquire the missing data of BD during routine soil surveys. In this study, multiple linear regression(MLR) and artificial neuron network(ANN) methods were used to develop PTFs for predicting BD from soil organic carbon(OC), texture and depth in the Three-River Headwater region of Qinghai Province, China. The performances of the developed PTFs were compared with 14 published PTFs using four indexes, the mean error(ME), standard deviation error(SDE), root mean squared error(RMSE) and coefficient of determination(R^2). Results showed that the performances of published PTFs developed using exponential regression were better than those developed using linear regression from OC. Alexander(1980)-B, Alexander(1980)-A and Manrique and Jones(1991)-B PTFs, which had good predictions, could be applied for the soils in the study area. The PTFs developed using MLR(MLR-PTFs) and ANN(ANN-PTFs) had better soil BD predictions than most of published PTFs. The ANN-PTFs had better performances than the MLR-PTFs and their performances could be improved when soil texture and depth were added as predictor variables. The idea of developing PTFs for predicting soil BD in the study area could provide reference for other areas and the results could lay foundation for the estimation of soil water retention and carbon pool. 展开更多
关键词 alpine soil artificial neural network multiple linear regression organic carbon soil depth soil texture
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部