期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
多尺度特征金字塔融合的街景图像语义分割
1
作者 曲海成 王莹 +1 位作者 董康龙 刘万军 《计算机系统应用》 2024年第3期73-84,共12页
针对街景图像语义分割任务中的目标尺寸差异大、多尺度特征难以高效提取的问题,本文提出了一种语义分割网络(LDPANet).首先,将空洞卷积与引入残差学习单元的深度可分离卷积结合,来优化编码器结构,在降低了计算复杂度的同时缓解梯度消失... 针对街景图像语义分割任务中的目标尺寸差异大、多尺度特征难以高效提取的问题,本文提出了一种语义分割网络(LDPANet).首先,将空洞卷积与引入残差学习单元的深度可分离卷积结合,来优化编码器结构,在降低了计算复杂度的同时缓解梯度消失的问题.然后利用层传递的迭代空洞空间金字塔,将自顶向下的特征信息依次融合,提高了上下文信息的有效交互能力;在多尺度特征融合之后引入属性注意力模块,使网络抑制冗余信息,强化重要特征.再者,以通道扩展上采样代替双线插值上采样作为解码器,进一步提升了特征图的分辨率.最后,LDPANet方法在Cityscapes和CamVid数据集上的精度分别达到了91.8%和87.52%,与近几年网络模型相比,本文网络模型可以精确地提取像素的位置信息以及空间维度信息,提高了语义分割的准确率. 展开更多
关键词 语义分割 MDSDC IDCP-LC 属性注意力 通道扩展上采样 特征融合
下载PDF
基于改进YOLO v7的笼养鸡/蛋自动识别与计数方法 被引量:14
2
作者 赵春江 梁雪文 +3 位作者 于合龙 王海峰 樊世杰 李斌 《农业机械学报》 EI CAS CSCD 北大核心 2023年第7期300-312,共13页
笼养模式下鸡/蛋自动识别与计数在低产能鸡判别及鸡舍智能化管理方面具有重要作用,针对鸡舍内光线不均、鸡只与笼之间遮挡及鸡蛋粘连等因素导致自动计数困难的问题,本研究以笼养鸡只与鸡蛋为研究对象,基于YOLO v7-tiny提出一种轻量型网... 笼养模式下鸡/蛋自动识别与计数在低产能鸡判别及鸡舍智能化管理方面具有重要作用,针对鸡舍内光线不均、鸡只与笼之间遮挡及鸡蛋粘连等因素导致自动计数困难的问题,本研究以笼养鸡只与鸡蛋为研究对象,基于YOLO v7-tiny提出一种轻量型网络YOLO v7-tiny-DO用于鸡只与鸡蛋识别,并设计自动化分笼计数方法。首先,采用JRWT1412型无畸变相机与巡检设备搭建自动化数据采集平台,获取2146幅笼养鸡只图像用于构建数据集。然后,在YOLO v7-tiny网络基础上应用指数线性单元(Exponential linear unit,ELU)激活函数减少模型训练时间;将高效层聚合网络(Efficient layer aggregation network,ELAN)中的常规卷积替换为深度卷积减少模型参数量,并在其基础上添加深度过参数化组件(深度卷积)构建深度过参数化深度卷积层(Depthwise over-parameterized depthwise convolutional layer,DO-DConv),以提取目标深层特征;同时在特征融合模块引入坐标注意力机制(Coordinate attention mechanism,CoordAtt),提升模型对目标空间位置信息的感知能力。试验结果表明,YOLO v7-tiny-DO识别鸡只和鸡蛋的平均精确率(Average precision,AP)分别为96.9%与99.3%,与YOLO v7-tiny相比,鸡只与鸡蛋的AP分别提高3.2、1.4个百分点;改进后模型内存占用量为5.6 MB,比原模型减小6.1 MB,适合部署于算力相对有限的巡检机器人;YOLO v7-tiny-DO在局部遮挡、运动模糊和鸡蛋粘连情况下均能实现高精度识别与定位,在光线昏暗情况下识别结果优于其他模型,具有较强的鲁棒性。最后,将本文算法部署到NVIDIA Jetson AGX Xavier边缘计算设备,在实际场景下选取30个鸡笼开展计数测试,持续3 d。结果表明,3个测试批次鸡只与鸡蛋的计数平均准确率均值分别为96.7%和96.3%,每笼平均绝对误差均值分别为0.13只鸡和0.09枚鸡蛋,可为规模化养殖场智能化管理提供参考。 展开更多
关键词 笼养鸡/蛋 YOLO v7-tiny 深度过参数化深度卷积层 计数 边缘计算
下载PDF
Lite-YOLOv3轻量级行人与车辆检测网络 被引量:6
3
作者 涂媛雅 汤国放 张建勋 《小型微型计算机系统》 CSCD 北大核心 2023年第1期211-217,共7页
基于卷积神经网络的目标检测在智能交通领域有着重要的应用,但存在复杂网络模型计算速度慢、简单网络模型精准度低两种问题.针对此问题,本文提出了基于Lite-YOLOv3的行人与车辆检测方法,该方法基于Tiny-YOLOv3网络模型进行改进.首先,本... 基于卷积神经网络的目标检测在智能交通领域有着重要的应用,但存在复杂网络模型计算速度慢、简单网络模型精准度低两种问题.针对此问题,本文提出了基于Lite-YOLOv3的行人与车辆检测方法,该方法基于Tiny-YOLOv3网络模型进行改进.首先,本文采用卷积代替下采样方案解决Tiny-YOLOv3网络特征提取损失问题.然后其骨干层采用改进的瓶颈块(BottleneckBlock)对前一层网络特征图进行降维、连接输入输出特征图,使得网络参数量大幅下降、防止网络退化.其预测层采用改进后的深度可分离卷积块(Depthwise Separable Convolution),分离深度卷积和点卷积可以有效降低网络运算成本,加快网络运算速度.Lite-YOLOv3相较于Tiny-YOLOv3网络的运算速度提升了27.27%,mAP提高了9.07%. 展开更多
关键词 tiny-YOLOv3算法 车辆检测 行人检测 瓶颈层 深度可分离卷积
下载PDF
基于生成对抗网络的带式输送机异物检测方法 被引量:2
4
作者 张立亚 《工矿自动化》 CSCD 北大核心 2023年第11期53-59,共7页
煤矿井下胶带运输图像具有照度低、细节不清晰、背景干扰等特点,现有的带式输送机异物检测模型存在精度低、灵活性差、计算量大、优化空间存在差异等问题。针对上述问题,提出了一种基于生成对抗网络(GAN)的带式输送机异物检测方法。对... 煤矿井下胶带运输图像具有照度低、细节不清晰、背景干扰等特点,现有的带式输送机异物检测模型存在精度低、灵活性差、计算量大、优化空间存在差异等问题。针对上述问题,提出了一种基于生成对抗网络(GAN)的带式输送机异物检测方法。对胶带运输过程视频文件进行预处理,分类得到正常图像、异常图像,制作实验数据集对改进GANomaly模型进行训练,再通过训练好的模型进行带式输送机异物检测。在训练阶段,将不含异物的带式输送机图像作为输入;在测试阶段,将含有异物的带式输送机图像作为输入,得到的重构图像与输入网络的原图像作差,即可得到异物的具体位置。GANomaly模型轻量化改进方法:在GANomaly基础网络模型中加入深度可分离卷积残差模块,采用深度可分离卷积代替原有主干网络中的卷积操作,大幅降低了模型计算量,同时减少了参数的冗余计算,能够明显提高异物检测速度;通过合并多个批量归一化(BN)层,加快模型的收敛迭代速度,提高模型的泛化收敛能力,有效避免梯度消失。实验结果表明,改进GANomaly模型相较于传统GANomaly模型,在运行速度上提升了6.27%,评价指标F1分数、AUC、召回率(Recall)和平均精度均值(mAP)分别提升了19.05%,22.22%,15.00%,17.14%。 展开更多
关键词 带式输送机 异物检测 生成对抗网络 GANomaly 深度可分离卷积 BN层合并 轻量化
下载PDF
基于跨层连接的多通道DBiSAC网络欺凌检测模型 被引量:2
5
作者 厉贤斌 崔晨 +1 位作者 翁理想 周杭霞 《中国计量大学学报》 2023年第1期92-100,共9页
目的:网络欺凌文本存在特征稀疏、用词不规范、语义模糊等问题,导致简单的神经网络无法充分提取其语义特征和句法特征。因此,提出了一种基于跨层连接的多通道DBiSAC网络欺凌检测模型。方法:先利用Glove预训练模型实现文本的词向量化表... 目的:网络欺凌文本存在特征稀疏、用词不规范、语义模糊等问题,导致简单的神经网络无法充分提取其语义特征和句法特征。因此,提出了一种基于跨层连接的多通道DBiSAC网络欺凌检测模型。方法:先利用Glove预训练模型实现文本的词向量化表示。其次构建并行的多尺度深度可分离卷积(MSDSC)和采用了跨层连接策略的双向简单循环(CBiSRU)的多通道特征提取网络,分别提取文本的局部特征和提取文本的上下文中语义信息的全局特征。再将局部特征和全局特征拼接之后利用多头注意力机制(MHA)对其重要特征信息进行捕捉。然后利用胶囊网络(Capsnet)对文本序列中空间层次的语义特征进行提取。最后将提取的文本特征信息通过含有Softmax函数的全连接层分类器输出分类结果。结果:实验表明,提出的模型在两个网络欺凌的数据集上均取得了最优的结果。结论:本文模型在能够有效提高模型准确率。。 展开更多
关键词 网络欺凌 跨层连接 深度可分类卷积 简单循环单元 注意力机制 胶囊网络
下载PDF
Fine-grained detection of caged-hen head states using adaptive Brightness Adjustment in combination with Convolutional Neural Networks
6
作者 Jia Chen Qi’an Ding +2 位作者 Wen Yao Mingxia Shen Longshen Liu 《International Journal of Agricultural and Biological Engineering》 SCIE 2023年第3期208-216,共9页
Timely identification and tracking of abnormal hens in stacked cages are of great significance for precision treatment and the elimination of sick individuals.The head features of the caged-hens are used to overcome o... Timely identification and tracking of abnormal hens in stacked cages are of great significance for precision treatment and the elimination of sick individuals.The head features of the caged-hens are used to overcome observation difficulties caused by the cage and feathers blocking,but it is still hard to identify similar head states.To solve this problem,the fine-grained detection of caged-hens head states was developed using adaptive Brightness Adjustment in combination with Convolutional Neural Networks(FBA-CNN).Grid Region-based CNN(R-CNN),a convolution neural network(CNN),was optimized with the Squeeze-and-Excitation(SE)and Depthwise Over-parameterized Convolutional(DO-Conv)to detect layer heads from cages and to accurately cut them as single-head images.The brightness of each single-head image was adjusted adaptively and classified through the deep convolution neural network based on SE-Resnet50.Finally,we returned to the original image to realize multi-target detection with coordinate mapping.The results showed that the AP@0.5 of layer head detection using the optimized Grid R-CNN was 0.947,the accuracy of classification with SE-Resnet50 was 0.749,the F1 score was 0.637,and the mAP@0.5 of FBA-CNN was 0.846.In summary,this automated method can accurately identify different layer head states in layer cages to provide a basis for follow-up studies of abnormal behavior including dyspnea and cachexia. 展开更多
关键词 Grid R-CNN squeeze-and-excitation depthwise over-parameterized convolutional adaptive brightness adjustment fine-grained detection
原文传递
基于改进CenterNet的绝缘子缺陷检测模型
7
作者 黄明忠 石洋洋 赵立杰 《沈阳大学学报(自然科学版)》 CAS 2023年第5期414-424,458,共12页
针对电力输电线无人机巡检图像中绝缘子及其缺陷识别精度低的问题,提出了一种基于CenterNet改进的绝缘子缺陷检测模型。该模型基于CenterNet目标检测模型,对编码器和解码器进行了改进。改进的编码器采用ResNet 50作为骨干网络,兼具特征... 针对电力输电线无人机巡检图像中绝缘子及其缺陷识别精度低的问题,提出了一种基于CenterNet改进的绝缘子缺陷检测模型。该模型基于CenterNet目标检测模型,对编码器和解码器进行了改进。改进的编码器采用ResNet 50作为骨干网络,兼具特征提取能力和较快的运行速度,并加入卷积注意力模块(CBAM)和空间金字塔池化模块(SPP),以增强特征提取能力。改进的解码器将转置卷积替换为内容感知特征重组模块(CARAFE),以减小连续上采样导致的特征丢失,并在解码器末尾加入坐标卷积以减小标准卷积空间不变性造成的影响。最后将模型中的标准卷积层替换成深度过参数化卷积(DO-Conv),进一步提升模型的性能、加快模型训练的收敛速度。使用绝缘子图片数据集对改进CenterNet模型进行了训练和测试。结果表明,改进CenterNet模型与其他主流的目标检测模型对比精度最高,mAP达到97.16%,检测速度达到了43帧·s^(-1),mAP比CenterNet模型提高了2.92%。 展开更多
关键词 CenterNet 绝缘子 缺陷检测 卷积块注意力模块 空间金字塔池化 深度过参数化卷积
下载PDF
基于深度过参数化卷积的路面病害分割研究
8
作者 刘玉文 黄友锐 韩涛 《湖北民族大学学报(自然科学版)》 CAS 2022年第4期437-444,共8页
道路精准养护关键是精确发现并解决影响车辆驾驶的道路问题,有效缩短道路病害工作闭环时间.针对道路养护中路面病害分割实时性与准确性,提出一种基于深度过参数化卷积的路面病害分割网络.首先,利用Focus模块与2层3×3卷积的切片操... 道路精准养护关键是精确发现并解决影响车辆驾驶的道路问题,有效缩短道路病害工作闭环时间.针对道路养护中路面病害分割实时性与准确性,提出一种基于深度过参数化卷积的路面病害分割网络.首先,利用Focus模块与2层3×3卷积的切片操作替换了网络特征压缩结构,以减小图像信息丢失.其次,通过替换ResNet50卷积模块中的传统卷积为深度过参数化卷积,提升网络收敛速度,并引入卷积块状注意力机制增强特征提取网络对图像信息的聚焦能力.最后,组合原型网络与预测头网络分别生成的原型掩膜与预测框掩膜系数,完成路面病害分割.路面病害分割实验在公开数据集和自制数据集下进行,分割平均精度AP_(all)分别为21.59%和31.43%,分割速度分别为31.33帧/s和30.52帧/s.实验结果表明改进后模型能够实现路面病害分割的实时性与高精准性. 展开更多
关键词 路面病害图像 实例分割 深度过参数化卷积 注意力机制
下载PDF
GMTS: GNN-based multi-scale transformer siamese network for remote sensing building change detection
9
作者 Xinyang Song Zhen Hua Jinjiang Li 《International Journal of Digital Earth》 SCIE EI 2023年第1期1685-1706,共22页
With the remarkable success of change detection(CD)in remote sensing images in the context of deep learning,many convolutional neural network(CNN)based methods have been proposed.In the current research,to obtain a be... With the remarkable success of change detection(CD)in remote sensing images in the context of deep learning,many convolutional neural network(CNN)based methods have been proposed.In the current research,to obtain a better context modeling method for remote sensing images and to capture more spatiotemporal characteristics,several attention-based methods and transformer(TR)-based methods have been proposed.Recent research has also continued to innovate on TR-based methods,and many new methods have been proposed.Most of them require a huge number of calculation to achieve good results.Therefore,using the TR-based mehtod while maintaining the overhead low is a problem to be solved.Here,we propose a GNN-based multi-scale transformer siamese network for remote sensing image change detection(GMTS)that maintains a low network overhead while effectively modeling context in the spatiotemporal domain.We also design a novel hybrid backbone to extract features.Compared with the current CNN backbone,our backbone network has a lower overhead and achieves better results.Further,we use high/low frequency(HiLo)attention to extract more detailed local features and the multi-scale pooling pyramid transformer(MPPT)module to focus on more global features respectively.Finally,we leverage the context modeling capabilities of TR in the spatiotemporal domain to optimize the extracted features.We have a relatively low number of parameters compared to that required by current TR-based methods and achieve a good effect improvement,which provides a good balance between efficiency and performance. 展开更多
关键词 Remote sensing(RS) change detection(CD) depthwise over-parameterized convolutional(DO-Conv) attention mechanism TRANSFORMER graph convolution
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部