Electromechanical carbon nanothermometers are devices that work based on the interactions and relative mo- tions of double-walled carbon nanotubes (DWCNTs). In this paper, the mechanics of carbon nanotubes (CNTs) ...Electromechanical carbon nanothermometers are devices that work based on the interactions and relative mo- tions of double-walled carbon nanotubes (DWCNTs). In this paper, the mechanics of carbon nanotubes (CNTs) con- stituting two welt-known configurations for nanothermome- ter, namely shuttle configuration and telescope configuration are fully investigated. Lennard-Jones (LJ) potential func- tion along with the continuum approximation is employed to investigate van der Waals (vdW) interactions between the in- teracting entities. Accordingly, semi-analytical expressions in terms of single integrals are obtained for vdW interactions. Acceptance condition and suction energy are studied for the shuttle configuration. In addition, a universal potential en- ergy is presented for the shuttle configuration consisting of two finite CNTs. Also, for the telescope configuration, ex- tensive studies are performed on the distributions of potential energy and interaction force for various radii and lengths of CNTs. It is found that these geometrical parameters have a considerable effect on the potential energy.展开更多
文摘Electromechanical carbon nanothermometers are devices that work based on the interactions and relative mo- tions of double-walled carbon nanotubes (DWCNTs). In this paper, the mechanics of carbon nanotubes (CNTs) con- stituting two welt-known configurations for nanothermome- ter, namely shuttle configuration and telescope configuration are fully investigated. Lennard-Jones (LJ) potential func- tion along with the continuum approximation is employed to investigate van der Waals (vdW) interactions between the in- teracting entities. Accordingly, semi-analytical expressions in terms of single integrals are obtained for vdW interactions. Acceptance condition and suction energy are studied for the shuttle configuration. In addition, a universal potential en- ergy is presented for the shuttle configuration consisting of two finite CNTs. Also, for the telescope configuration, ex- tensive studies are performed on the distributions of potential energy and interaction force for various radii and lengths of CNTs. It is found that these geometrical parameters have a considerable effect on the potential energy.