Multiuser detection can be described as a quadratic optimization problem with binary constraint. Many techniques are available to find approximate solution to this problem. These tech- niques can be characterized in t...Multiuser detection can be described as a quadratic optimization problem with binary constraint. Many techniques are available to find approximate solution to this problem. These tech- niques can be characterized in terms of complexity and detection performance. The "efficient frontier" of known techniques include the decision-feedback, branch-and-bound and probabilistic data association detectors. The presented iterative multiuser detection technique is based on joint deregularized and box-constrained so- lution to quadratic optimization with iterations similar to that used in the nonstationary Tikhonov iterated algorithm. The deregulari- zation maximizes the energy of the solution, this is opposite to the Tikhonov regularization where the energy is minimized. However, combined with box-constraints, the deregularization forces the solution to be close to the binary set. We further exploit the box- constrained dichotomous coordinate descent (DCD) algorithm and adapt it to the nonstationary iterative Tikhonov regularization to present an efficient detector. As a result, the worst-case and aver- age complexity are reduced down to K28 and K2~ floating point operation per second, respectively. The development improves the "efficient frontier" in multiuser detection, which is illustrated by simulation results. Finally, a field programmable gate array (FPGA) design of the detector is presented. The detection performance obtained from the fixed-point FPGA implementation shows a good match to the floating-point implementation.展开更多
基金supported by the National Council for Technological and Scientific Development of Brazil (RN82/2008)
文摘Multiuser detection can be described as a quadratic optimization problem with binary constraint. Many techniques are available to find approximate solution to this problem. These tech- niques can be characterized in terms of complexity and detection performance. The "efficient frontier" of known techniques include the decision-feedback, branch-and-bound and probabilistic data association detectors. The presented iterative multiuser detection technique is based on joint deregularized and box-constrained so- lution to quadratic optimization with iterations similar to that used in the nonstationary Tikhonov iterated algorithm. The deregulari- zation maximizes the energy of the solution, this is opposite to the Tikhonov regularization where the energy is minimized. However, combined with box-constraints, the deregularization forces the solution to be close to the binary set. We further exploit the box- constrained dichotomous coordinate descent (DCD) algorithm and adapt it to the nonstationary iterative Tikhonov regularization to present an efficient detector. As a result, the worst-case and aver- age complexity are reduced down to K28 and K2~ floating point operation per second, respectively. The development improves the "efficient frontier" in multiuser detection, which is illustrated by simulation results. Finally, a field programmable gate array (FPGA) design of the detector is presented. The detection performance obtained from the fixed-point FPGA implementation shows a good match to the floating-point implementation.