The object of this paper is to establish the pointwise estimations of approximation of functions in C^1 and their derivatives by Hermite interpolation polynomials. The given orders have been proved to be exact in gen-...The object of this paper is to establish the pointwise estimations of approximation of functions in C^1 and their derivatives by Hermite interpolation polynomials. The given orders have been proved to be exact in gen- eral.展开更多
This paper establishes the following pointwise result for simultancous Lagrange imterpolating approxima- tion:,then |f^(k)(x)-P_n^(k)(f,x)|=O(1)△_n^(q-k)(x)ω where P_n(f,x)is the Lagrange interpolating potynomial of...This paper establishes the following pointwise result for simultancous Lagrange imterpolating approxima- tion:,then |f^(k)(x)-P_n^(k)(f,x)|=O(1)△_n^(q-k)(x)ω where P_n(f,x)is the Lagrange interpolating potynomial of deereeon the nodes X_nUY_n(see the definition of the next).展开更多
Let ξn-1<ξn-2 <ξn-2 <… < ξ1 be the zeros of the the (n -1)-th Legendre polynomial Pn-1(x) and - 1 = xn < xn-1 <… < x1 = 1 the zeros of the polynomial W n(x) =- n(n - 1) Pn-1(t)dt = (1 -x2)P&...Let ξn-1<ξn-2 <ξn-2 <… < ξ1 be the zeros of the the (n -1)-th Legendre polynomial Pn-1(x) and - 1 = xn < xn-1 <… < x1 = 1 the zeros of the polynomial W n(x) =- n(n - 1) Pn-1(t)dt = (1 -x2)P'n-1(x). By the theory of the inverse Pal-Type interpolation, for a function f(x) ∈ C[-1 1], there exists a unique polynomial Rn(x) of degree 2n - 2 (if n is even) satisfying conditions Rn(f,ξk) = f(∈ek)(1≤ k≤ n - 1) ;R'n(f,xk) = f'(xk)(1≤ k≤ n). This paper discusses the simultaneous approximation to a differentiable function f by inverse Pal-Type interpolation polynomial {Rn(f,x)} (n is even) and the main result of this paper is that if f ∈ C'[1,1], r≥2, n≥ + 2> and n is even thenholds uniformly for all x ∈ [- 1,1], where h(x) = 1 +展开更多
Let g∈C^q[-1, 1] be such that g^((k))(±1)=0 for k=0,…,q. Let P_n be an algebraic polynomial of degree at most n, such that P_n^((k))(±1)=0 for k=0,…,[_2~ (q+1)]. Then P_n and its derivatives P_n^((k)) fo...Let g∈C^q[-1, 1] be such that g^((k))(±1)=0 for k=0,…,q. Let P_n be an algebraic polynomial of degree at most n, such that P_n^((k))(±1)=0 for k=0,…,[_2~ (q+1)]. Then P_n and its derivatives P_n^((k)) for k≤q well approximate g and its respective derivatives, provided only that P_n well approxi- mates g itself in the weighted norm ‖g(x)-P_n(x) (1-x^2)^(1/2)~q‖ This result is easily extended to an arbitrary f∈C^q[-1, 1], by subtracting from f the polynomial of minnimal degree which interpolates f^((0))…,f^((q)) at±1. As well as providing easy criteria for judging the simultaneous approximation properties of a given Polynomial to a given function, our results further explain the similarities and differences between algebraic polynomial approximation in C^q[-1, 1] and trigonometric polynomial approximation in the space of q times differentiable 2π-periodic functions. Our proofs are elementary and basic in character, permitting the construction of actual error estimates for simultaneous approximation proedures for small values of q.展开更多
High order accurate weighted essentially non-oscillatory (WENO) schemes have been used extensively in numerical solutions of hyperbolic partial differential equations and other convection dominated problems. However...High order accurate weighted essentially non-oscillatory (WENO) schemes have been used extensively in numerical solutions of hyperbolic partial differential equations and other convection dominated problems. However the WENO procedure can not be applied directly to obtain a stable scheme when negative linear weights are present. In this paper, we first briefly review the WENO framework and the role of linear weights, and then present a detailed study on the positivity of linear weights in a few typical WENO procedures, including WENO interpolation, WENO reconstruction and WENO approximation to first and second derivatives, and WENO integration. Explicit formulae for the linear weights are also given for these WENO procedures. The results of this paper should be useful for future design of WENO schemes involving interpolation, reconstruction, approximation to first and second derivatives, and integration procedures.展开更多
In this study, a collocation technique is presented for approximate solution of the fractional-order logistic population model. Actually, we develop the Bessel collocation method by using the fractional derivative in ...In this study, a collocation technique is presented for approximate solution of the fractional-order logistic population model. Actually, we develop the Bessel collocation method by using the fractional derivative in the Caputo sense to obtain the approximate solutions of this model problem. By means of the fractional derivative in the Caputo sense, the collocation points, the Bessel functions of the first kind, the method transforms the model problem into a system of nonlinear algebraic equations. Numerical applications are given to demonstrate efficiency and accuracy of the method. In applications, the reliability of the scheme is shown by the error function based on the accuracy of the approximate solution.展开更多
文摘The object of this paper is to establish the pointwise estimations of approximation of functions in C^1 and their derivatives by Hermite interpolation polynomials. The given orders have been proved to be exact in gen- eral.
基金The second named author was supported in part by an NSERC Postdoctoral Fellowship,Canada and a CR F Grant,University of Alberta
文摘This paper establishes the following pointwise result for simultancous Lagrange imterpolating approxima- tion:,then |f^(k)(x)-P_n^(k)(f,x)|=O(1)△_n^(q-k)(x)ω where P_n(f,x)is the Lagrange interpolating potynomial of deereeon the nodes X_nUY_n(see the definition of the next).
文摘Let ξn-1<ξn-2 <ξn-2 <… < ξ1 be the zeros of the the (n -1)-th Legendre polynomial Pn-1(x) and - 1 = xn < xn-1 <… < x1 = 1 the zeros of the polynomial W n(x) =- n(n - 1) Pn-1(t)dt = (1 -x2)P'n-1(x). By the theory of the inverse Pal-Type interpolation, for a function f(x) ∈ C[-1 1], there exists a unique polynomial Rn(x) of degree 2n - 2 (if n is even) satisfying conditions Rn(f,ξk) = f(∈ek)(1≤ k≤ n - 1) ;R'n(f,xk) = f'(xk)(1≤ k≤ n). This paper discusses the simultaneous approximation to a differentiable function f by inverse Pal-Type interpolation polynomial {Rn(f,x)} (n is even) and the main result of this paper is that if f ∈ C'[1,1], r≥2, n≥ + 2> and n is even thenholds uniformly for all x ∈ [- 1,1], where h(x) = 1 +
基金Supported by International Research and Exchanges Board Supported by Hungarian National Science Foundation Grant No. 1910
文摘Let g∈C^q[-1, 1] be such that g^((k))(±1)=0 for k=0,…,q. Let P_n be an algebraic polynomial of degree at most n, such that P_n^((k))(±1)=0 for k=0,…,[_2~ (q+1)]. Then P_n and its derivatives P_n^((k)) for k≤q well approximate g and its respective derivatives, provided only that P_n well approxi- mates g itself in the weighted norm ‖g(x)-P_n(x) (1-x^2)^(1/2)~q‖ This result is easily extended to an arbitrary f∈C^q[-1, 1], by subtracting from f the polynomial of minnimal degree which interpolates f^((0))…,f^((q)) at±1. As well as providing easy criteria for judging the simultaneous approximation properties of a given Polynomial to a given function, our results further explain the similarities and differences between algebraic polynomial approximation in C^q[-1, 1] and trigonometric polynomial approximation in the space of q times differentiable 2π-periodic functions. Our proofs are elementary and basic in character, permitting the construction of actual error estimates for simultaneous approximation proedures for small values of q.
基金Supported by the National Natural Science Foundation of China(No.10671190)Natural Science Foundationgrant DMS-0809086 and ARO grant W911NF-08-1-0520
文摘High order accurate weighted essentially non-oscillatory (WENO) schemes have been used extensively in numerical solutions of hyperbolic partial differential equations and other convection dominated problems. However the WENO procedure can not be applied directly to obtain a stable scheme when negative linear weights are present. In this paper, we first briefly review the WENO framework and the role of linear weights, and then present a detailed study on the positivity of linear weights in a few typical WENO procedures, including WENO interpolation, WENO reconstruction and WENO approximation to first and second derivatives, and WENO integration. Explicit formulae for the linear weights are also given for these WENO procedures. The results of this paper should be useful for future design of WENO schemes involving interpolation, reconstruction, approximation to first and second derivatives, and integration procedures.
文摘In this study, a collocation technique is presented for approximate solution of the fractional-order logistic population model. Actually, we develop the Bessel collocation method by using the fractional derivative in the Caputo sense to obtain the approximate solutions of this model problem. By means of the fractional derivative in the Caputo sense, the collocation points, the Bessel functions of the first kind, the method transforms the model problem into a system of nonlinear algebraic equations. Numerical applications are given to demonstrate efficiency and accuracy of the method. In applications, the reliability of the scheme is shown by the error function based on the accuracy of the approximate solution.