A method for determining the extrema of a real-valued and differentiable function for which its dependent variables are subject to constraints and that avoided the use of Lagrange multipliers was previously presented ...A method for determining the extrema of a real-valued and differentiable function for which its dependent variables are subject to constraints and that avoided the use of Lagrange multipliers was previously presented (Corti and Fariello, Op. Res. Forum 2 (2021) 59). The method made use of projection matrices, and a corresponding Gram-Schmidt orthogonalization process, to identify the constrained extrema. Furthermore, information about the second-derivatives of the given function with constraints was generated, from which the nature of the constrained extrema could be determined, again without knowledge of the Lagrange multipliers. Here, the method is extended to the case of functional derivatives with constraints. In addition, constrained first-order and second-order derivatives of the function are generated, in which the derivatives with respect to a given variable are obtained and, concomitantly, the effect of the variations of the remaining chosen set of dependent variables are strictly accounted for. These constrained derivatives are valid not only at the extrema points, and also provide another equivalent route for the determination of the constrained extrema and their nature.展开更多
In this paper, The integral characterizations of alpha-Bloch (little alpha-Bloch) axe given in terms of higher radial derivative, and their characterizations of Caxleson type measure are obtained.
In the paper, the authors find some new inequalities of Hermite-Hadamard type for functions whose third derivatives are s-convex and apply these inequalities to discover inequalities for special means.
The first through ninth radial derivatives of a harmonic function and gravity anomaly are derived in this paper. These derivatives can be used in the analytical continuation application. For the downward continuation ...The first through ninth radial derivatives of a harmonic function and gravity anomaly are derived in this paper. These derivatives can be used in the analytical continuation application. For the downward continuation of gravity anomaly, the Taylor series approach developed in the paper is equivalent theoretically to but more efficient and storage-saving computationally than the well-known gradient operator approach. Numerical simulation shows that Taylor series expansion constructed by the derived formulas for the radial derivatives of gravity disturbance is still convergent for height up to 4 km.展开更多
According to the necessary condition of the functional taking the extremum, that is its first variation is equal to zero, the variational problems of the functionals for the undetermined boundary in the calculus of va...According to the necessary condition of the functional taking the extremum, that is its first variation is equal to zero, the variational problems of the functionals for the undetermined boundary in the calculus of variations are researched, the functionals depend on single argument, arbitrary unknown functions and their derivatives of higher orders. A new view point is posed and demonstrated, i.e. when the first variation of the functional is equal to zero, all the variational terms are not independent to each other, and at least one of them is equal to zero. Some theorems and corollaries of the variational problems of the functionals are obtained.展开更多
In this paper, we define a functional optimization problem corresponding to smooth functions which its optimal solution is first derivative of these functions in a domain. These functional optimization problems are ap...In this paper, we define a functional optimization problem corresponding to smooth functions which its optimal solution is first derivative of these functions in a domain. These functional optimization problems are applied for non-smooth functions which by solving these problems we obtain a kind of generalized first derivatives. For this purpose, a linear programming problem corresponding functional optimization problem is obtained which their optimal solutions give the approximate generalized first derivative. We show the efficiency of our approach by obtaining derivative and generalized derivative of some smooth and nonsmooth functions respectively in some illustrative examples.展开更多
Let F be a meromorphic functions family on the unit disc Δ, If for every (the zeros of f is a multiplicity of at least k) and if then and ( ), then F is normal on Δ.
By using the Cauchy integral formula of bianalytic functions, the formula of higher derivatives of bianalytic functions and Weierstrass Theorem are obtained.
In this paper,we study a special class of fractal interpolation functions,and give their Haar-wavelet expansions.On the basis of the expansions,we investigate the H(o|¨)lder smoothness of such functions and their...In this paper,we study a special class of fractal interpolation functions,and give their Haar-wavelet expansions.On the basis of the expansions,we investigate the H(o|¨)lder smoothness of such functions and their logical derivatives of order α.展开更多
This paper establishes the following pointwise result for simultancous Lagrange imterpolating approxima- tion:,then |f^(k)(x)-P_n^(k)(f,x)|=O(1)△_n^(q-k)(x)ω where P_n(f,x)is the Lagrange interpolating potynomial of...This paper establishes the following pointwise result for simultancous Lagrange imterpolating approxima- tion:,then |f^(k)(x)-P_n^(k)(f,x)|=O(1)△_n^(q-k)(x)ω where P_n(f,x)is the Lagrange interpolating potynomial of deereeon the nodes X_nUY_n(see the definition of the next).展开更多
The object of this paper is to establish the pointwise estimations of approximation of functions in C^1 and their derivatives by Hermite interpolation polynomials. The given orders have been proved to be exact in gen-...The object of this paper is to establish the pointwise estimations of approximation of functions in C^1 and their derivatives by Hermite interpolation polynomials. The given orders have been proved to be exact in gen- eral.展开更多
This paper studies variable separation of the evolution equations via the generalized conditional symmetry. To illustrate, we classify the extended nonlinear wave equation utt = A(u, ux)uxx+B(u, ux, ut) which adm...This paper studies variable separation of the evolution equations via the generalized conditional symmetry. To illustrate, we classify the extended nonlinear wave equation utt = A(u, ux)uxx+B(u, ux, ut) which admits the derivative- dependent functional separable solutions (DDFSSs). We also extend the concept of the DDFSS to cover other variable separation approaches.展开更多
The present paper generalizes the method for solving the derivatives of symmetric isotropic tensor-valued functions proposed by Dui and Chen (2004) to a subclass of nonsymmetric tensor functions satisfying the commu...The present paper generalizes the method for solving the derivatives of symmetric isotropic tensor-valued functions proposed by Dui and Chen (2004) to a subclass of nonsymmetric tensor functions satisfying the commutative condition. This subclass of tensor functions is more general than those investigated by the existing methods. In the case of three distinct eigenvalues, the commutativity makes it possible to introduce two scalar functions, which will be used to construct the general nonsymmetric tensor functions and their derivatives. In the cases of repeated eigenvalues, the results are acquired by taking limits.展开更多
In this paper,some new criteria for univalence of analytic functions defined in the unit disk in terms of two parameters are presented.Moreover,the related result of Aharonov and Elias(Aharonov D,Elias U.Univalence cr...In this paper,some new criteria for univalence of analytic functions defined in the unit disk in terms of two parameters are presented.Moreover,the related result of Aharonov and Elias(Aharonov D,Elias U.Univalence criteria depending on parameters.Anal.Math.Phys.,2014,4(1-2):23–34)is generalized.展开更多
In this paper, we mainly discuss the problem of estimating the n-th derivative for bounded regular vanishing functions. The estimation of the n-th derivative for the function is deduced by the 1-th and 2-th derivative.
The object of the present paper is to investigate various argument results of analytic and multivalent functions which are defined by using a certain fractional derivative operator. Some interesting applications are a...The object of the present paper is to investigate various argument results of analytic and multivalent functions which are defined by using a certain fractional derivative operator. Some interesting applications are also considered.展开更多
In this paper,we obtain the fractal dimension of the graph of the Weierstrass function, its derivative of the fractional order and the relation between the dimension and the order of the fractional derivative.
Let f be a meromorphic function in C. If the order of f is greater than 2,has finitely many zeros and f takes a non-zero finite value finitely times, and then ?is unbounded.
In the paper, we take up a new method to prove a result of value distribution of meromorphic functions: let f be a meromorphic function in , and let , where P is a polynomial. Suppose that all zeros of f have multipli...In the paper, we take up a new method to prove a result of value distribution of meromorphic functions: let f be a meromorphic function in , and let , where P is a polynomial. Suppose that all zeros of f have multiplicity at least , except possibly finite many, and as . Then has infinitely many zeros.展开更多
文摘A method for determining the extrema of a real-valued and differentiable function for which its dependent variables are subject to constraints and that avoided the use of Lagrange multipliers was previously presented (Corti and Fariello, Op. Res. Forum 2 (2021) 59). The method made use of projection matrices, and a corresponding Gram-Schmidt orthogonalization process, to identify the constrained extrema. Furthermore, information about the second-derivatives of the given function with constraints was generated, from which the nature of the constrained extrema could be determined, again without knowledge of the Lagrange multipliers. Here, the method is extended to the case of functional derivatives with constraints. In addition, constrained first-order and second-order derivatives of the function are generated, in which the derivatives with respect to a given variable are obtained and, concomitantly, the effect of the variations of the remaining chosen set of dependent variables are strictly accounted for. These constrained derivatives are valid not only at the extrema points, and also provide another equivalent route for the determination of the constrained extrema and their nature.
基金The research is supported by NNSF of China(19771082)
文摘In this paper, The integral characterizations of alpha-Bloch (little alpha-Bloch) axe given in terms of higher radial derivative, and their characterizations of Caxleson type measure are obtained.
文摘In the paper, the authors find some new inequalities of Hermite-Hadamard type for functions whose third derivatives are s-convex and apply these inequalities to discover inequalities for special means.
文摘The first through ninth radial derivatives of a harmonic function and gravity anomaly are derived in this paper. These derivatives can be used in the analytical continuation application. For the downward continuation of gravity anomaly, the Taylor series approach developed in the paper is equivalent theoretically to but more efficient and storage-saving computationally than the well-known gradient operator approach. Numerical simulation shows that Taylor series expansion constructed by the derived formulas for the radial derivatives of gravity disturbance is still convergent for height up to 4 km.
文摘According to the necessary condition of the functional taking the extremum, that is its first variation is equal to zero, the variational problems of the functionals for the undetermined boundary in the calculus of variations are researched, the functionals depend on single argument, arbitrary unknown functions and their derivatives of higher orders. A new view point is posed and demonstrated, i.e. when the first variation of the functional is equal to zero, all the variational terms are not independent to each other, and at least one of them is equal to zero. Some theorems and corollaries of the variational problems of the functionals are obtained.
文摘In this paper, we define a functional optimization problem corresponding to smooth functions which its optimal solution is first derivative of these functions in a domain. These functional optimization problems are applied for non-smooth functions which by solving these problems we obtain a kind of generalized first derivatives. For this purpose, a linear programming problem corresponding functional optimization problem is obtained which their optimal solutions give the approximate generalized first derivative. We show the efficiency of our approach by obtaining derivative and generalized derivative of some smooth and nonsmooth functions respectively in some illustrative examples.
文摘Let F be a meromorphic functions family on the unit disc Δ, If for every (the zeros of f is a multiplicity of at least k) and if then and ( ), then F is normal on Δ.
文摘By using the Cauchy integral formula of bianalytic functions, the formula of higher derivatives of bianalytic functions and Weierstrass Theorem are obtained.
文摘In this paper,we study a special class of fractal interpolation functions,and give their Haar-wavelet expansions.On the basis of the expansions,we investigate the H(o|¨)lder smoothness of such functions and their logical derivatives of order α.
基金The second named author was supported in part by an NSERC Postdoctoral Fellowship,Canada and a CR F Grant,University of Alberta
文摘This paper establishes the following pointwise result for simultancous Lagrange imterpolating approxima- tion:,then |f^(k)(x)-P_n^(k)(f,x)|=O(1)△_n^(q-k)(x)ω where P_n(f,x)is the Lagrange interpolating potynomial of deereeon the nodes X_nUY_n(see the definition of the next).
文摘The object of this paper is to establish the pointwise estimations of approximation of functions in C^1 and their derivatives by Hermite interpolation polynomials. The given orders have been proved to be exact in gen- eral.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10371098, 10447007 and 10475055), the Natural Science Foundation of Shaanxi Province of China (Grant No 2005A13).
文摘This paper studies variable separation of the evolution equations via the generalized conditional symmetry. To illustrate, we classify the extended nonlinear wave equation utt = A(u, ux)uxx+B(u, ux, ut) which admits the derivative- dependent functional separable solutions (DDFSSs). We also extend the concept of the DDFSS to cover other variable separation approaches.
基金the National Natural Science Foundation of China(No.50539030)
文摘The present paper generalizes the method for solving the derivatives of symmetric isotropic tensor-valued functions proposed by Dui and Chen (2004) to a subclass of nonsymmetric tensor functions satisfying the commutative condition. This subclass of tensor functions is more general than those investigated by the existing methods. In the case of three distinct eigenvalues, the commutativity makes it possible to introduce two scalar functions, which will be used to construct the general nonsymmetric tensor functions and their derivatives. In the cases of repeated eigenvalues, the results are acquired by taking limits.
基金The NSF(11501001)of Chinathe NSF(1908085MA18)of Anhui Provincethe Foundation(Y01002428)of Anhui University
文摘In this paper,some new criteria for univalence of analytic functions defined in the unit disk in terms of two parameters are presented.Moreover,the related result of Aharonov and Elias(Aharonov D,Elias U.Univalence criteria depending on parameters.Anal.Math.Phys.,2014,4(1-2):23–34)is generalized.
文摘In this paper, we mainly discuss the problem of estimating the n-th derivative for bounded regular vanishing functions. The estimation of the n-th derivative for the function is deduced by the 1-th and 2-th derivative.
文摘The object of the present paper is to investigate various argument results of analytic and multivalent functions which are defined by using a certain fractional derivative operator. Some interesting applications are also considered.
基金Project supported by National Natural Science Foundation of China.
文摘In this paper,we obtain the fractal dimension of the graph of the Weierstrass function, its derivative of the fractional order and the relation between the dimension and the order of the fractional derivative.
文摘Let f be a meromorphic function in C. If the order of f is greater than 2,has finitely many zeros and f takes a non-zero finite value finitely times, and then ?is unbounded.
文摘In the paper, we take up a new method to prove a result of value distribution of meromorphic functions: let f be a meromorphic function in , and let , where P is a polynomial. Suppose that all zeros of f have multiplicity at least , except possibly finite many, and as . Then has infinitely many zeros.