期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Variable Separation and Derivative-Dependent Functional Separable Solutions to Generalized Nonlinear Wave Equations 被引量:3
1
作者 ZHANGShun-Li LOUSen-Yue 《Communications in Theoretical Physics》 SCIE CAS CSCD 2004年第2期161-174,共14页
Using the generalized conditional symmetry approach, we obtain a number of new generalized (1+1)-dimensional nonlinear wave equations that admit derivative-dependent functional separable solutions.
关键词 variable separation nonlinear wave derivative-dependent functional separable solution
下载PDF
Approximate derivative-dependent functional variable separation for quasi-linear diffusion equations with a weak source
2
作者 吉飞宇 杨春晓 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第10期67-72,共6页
By using the approximate derivative-dependent functional variable separation approach, we study the quasi-linear diffusion equations with a weak source ut = (A(u)Ux)x + eB(u, Ux). A complete classification of t... By using the approximate derivative-dependent functional variable separation approach, we study the quasi-linear diffusion equations with a weak source ut = (A(u)Ux)x + eB(u, Ux). A complete classification of these perturbed equations which admit approximate derivative-dependent functional separable solutions is listed. As a consequence, some approxi- mate solutions to the resulting perturbed equations are constructed via examples. 展开更多
关键词 quasi-linear diffusion equation approximate derivative-dependent functional separable solution approximate generalized conditional symmetry
下载PDF
Approximate Derivative-Dependent Functional Variable Separation for the Generalized Diffusion Equations with Perturbation 被引量:1
3
作者 张顺利 吉飞宇 屈长征 《Communications in Theoretical Physics》 SCIE CAS CSCD 2012年第8期175-181,共7页
As an extension to the derivative-dependent functional variable separation approach, the approximate derivative-dependent functional variable separation approach is proposed, and it is applied to study the generalized... As an extension to the derivative-dependent functional variable separation approach, the approximate derivative-dependent functional variable separation approach is proposed, and it is applied to study the generalized diffusion equations with perturbation. Complete classification of these perturbed equations which admit approximate derivative-dependent functional separable solutions is obtained. As a result, the corresponding approximate derivative-dependent functional separable solutions to some resulting perturbed equations are derived by way of examples. 展开更多
关键词 generalized diffusion equation approximate derivative-dependent functional separable solution approximate generalized conditional symmetry
原文传递
Variable Separation for(1+1)-Dimensional Nonlinear Evolution Equations with Mixed Partial Derivatives 被引量:1
4
作者 WANG Peng-Zhou ZHANG Shun-Li 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第10期797-802,共6页
We present basic theory of variable separation for (1 + 1)-dimensional nonlinear evolution equations withmixed partial derivatives.As an application,we classify equations u_(xt)=A(u,u_x)u_(xxx)+B(u,u_x) that admits de... We present basic theory of variable separation for (1 + 1)-dimensional nonlinear evolution equations withmixed partial derivatives.As an application,we classify equations u_(xt)=A(u,u_x)u_(xxx)+B(u,u_x) that admits derivative-dependent functional separable solutions (DDFSSs) and illustrate how to construct those DDFSSs with some examples. 展开更多
关键词 (1 1)-dimensional nonlinear evolution equations variable separation generalized conditional symmetry derivative-dependent functional separable solution
下载PDF
非线性系统的一般条件对称和导数相关泛函分离变量法
5
作者 张顺利 《宁波大学学报(理工版)》 CAS 2020年第5期26-31,共6页
众所周知,Fourier分析和分离变量法是研究线性系统的有效手段,但分离变量法难以推广到非线性系统.发展处理非线性系统的新的分离变量法迫在眉睫.首先提出导数相关泛函分离变量解(DDFSS)的新概念,给出定义,据此寻求相应的一般条件对称(GC... 众所周知,Fourier分析和分离变量法是研究线性系统的有效手段,但分离变量法难以推广到非线性系统.发展处理非线性系统的新的分离变量法迫在眉睫.首先提出导数相关泛函分离变量解(DDFSS)的新概念,给出定义,据此寻求相应的一般条件对称(GCS),创建理论体系(简称DDFSS方法).尔后,分别应用DDFSS方法于一般非线性扩散方程、KdV类方程、一般非线性波动方程:(1)对所考察方程做了DDFSS可解的完全归类;(2)利用DDFSS方法建立了所得分类方程的DDFSS精确解;(3)描述了一些解的局域激发等性质,给出了有关结果的对称群解释.最后指出,DDFSS方法可发展应用于求解某些高维方程和方程组问题,更能扩展用于处理带扰动项的非线性系统. 展开更多
关键词 一般非线性扩散方程 KdV类方程 一般非线性波动方程 一般条件对称 导数相关泛函分离变量解
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部