A new all aromatic thermotropic liquid crystalline polyester from acetylhydroquinone was prepared by nucleophilic substitution reaction and characterized for its thermotropic liquid crystalline property. The new polye...A new all aromatic thermotropic liquid crystalline polyester from acetylhydroquinone was prepared by nucleophilic substitution reaction and characterized for its thermotropic liquid crystalline property. The new polyester was amorphous which had glass transition at 274 degrees C. Above Tg, the sample exhibited typical nematic texture. It showed high thermal stability (Td=487 degrees C).展开更多
In this work, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), 1,5-diazabicyclo[4.3.0]-5-nonene (DBN), and imidazole (MIM)-derived bromide ionic liquids (ILs) were synthesized and used to catalyze the cycloaddition r...In this work, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), 1,5-diazabicyclo[4.3.0]-5-nonene (DBN), and imidazole (MIM)-derived bromide ionic liquids (ILs) were synthesized and used to catalyze the cycloaddition reactions of carbon dioxide (CO_2) with several kinds of epoxides to form cyclic car- bonates. The DBU derived bromide ionic liquid system was found to have the best catalytic activity among all the tested ILs. The influences of reaction conditions (including temperature, pressure and reaction time) on the reaction of CO_2 to propylene oxide (PO) were studied to show the best conditions of 120℃, 1 MPa, 2.5 h catalyzed by 2 mol% DBU-derived bromide ionic liquid, with the conversion of PO and the selectivity of propylene carbonate (PC) reaching 99% and 99%, respectively. Under the optimum reaction conditions, the ionic liquid system could be reused at least five times without decrease in selectivity and conversion. NMR spectroscopy and DFT calculations were used to reveal the hydrogen-bond interaction between ionic liquids and rea- gent, based on which the reaction mechanism was proposed.展开更多
A continuum constitutive theory of corotational derivative type is developed for the anisotropic viscoelastic fluid-liquid crystalline (LC) polymers. A concept of anisotropic viscoelastic simple fluid is introduced....A continuum constitutive theory of corotational derivative type is developed for the anisotropic viscoelastic fluid-liquid crystalline (LC) polymers. A concept of anisotropic viscoelastic simple fluid is introduced. The stress tensor instead of the velocity gradient tensor D in the classic Leslie-Ericksen theory is described by the first Rivlin-Ericksen tensor A and a spin tensor W measured with respect to a co-rotational coordinate system. A model LCP-H on this theory is proposed and the characteristic unsymmetric behaviour of the shear stress is predicted for LC polymer liquids. Two shear stresses thereby in shear flow of LC polymer liquids lead to internal vortex flow and rotational flow. The conclusion could be of theoretical meaning for the modern liquid crystalline display technology. By using the equation, extrusion-extensional flows of the fluid are studied for fiber spinning of LC polymer melts, the elongational viscosity vs. extension rate with variation of shear rate is given in figures. A considerable increase of elongational viscosity and bifurcation behaviour are observed when the orientational motion of the director vector is considered. The contraction of extru- date of LC polymer melts is caused by the high elongational viscosity. For anisotropic viscoelastic fluids, an important advance has been made in the investigation on the constitutive equation on the basis of which a seriesof new anisotropic non-Newtonian fluid problems can be addressed.展开更多
文摘A new all aromatic thermotropic liquid crystalline polyester from acetylhydroquinone was prepared by nucleophilic substitution reaction and characterized for its thermotropic liquid crystalline property. The new polyester was amorphous which had glass transition at 274 degrees C. Above Tg, the sample exhibited typical nematic texture. It showed high thermal stability (Td=487 degrees C).
文摘In this work, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), 1,5-diazabicyclo[4.3.0]-5-nonene (DBN), and imidazole (MIM)-derived bromide ionic liquids (ILs) were synthesized and used to catalyze the cycloaddition reactions of carbon dioxide (CO_2) with several kinds of epoxides to form cyclic car- bonates. The DBU derived bromide ionic liquid system was found to have the best catalytic activity among all the tested ILs. The influences of reaction conditions (including temperature, pressure and reaction time) on the reaction of CO_2 to propylene oxide (PO) were studied to show the best conditions of 120℃, 1 MPa, 2.5 h catalyzed by 2 mol% DBU-derived bromide ionic liquid, with the conversion of PO and the selectivity of propylene carbonate (PC) reaching 99% and 99%, respectively. Under the optimum reaction conditions, the ionic liquid system could be reused at least five times without decrease in selectivity and conversion. NMR spectroscopy and DFT calculations were used to reveal the hydrogen-bond interaction between ionic liquids and rea- gent, based on which the reaction mechanism was proposed.
基金the National Natural Science Foundation of China(10372100,19832050)(Key project).
文摘A continuum constitutive theory of corotational derivative type is developed for the anisotropic viscoelastic fluid-liquid crystalline (LC) polymers. A concept of anisotropic viscoelastic simple fluid is introduced. The stress tensor instead of the velocity gradient tensor D in the classic Leslie-Ericksen theory is described by the first Rivlin-Ericksen tensor A and a spin tensor W measured with respect to a co-rotational coordinate system. A model LCP-H on this theory is proposed and the characteristic unsymmetric behaviour of the shear stress is predicted for LC polymer liquids. Two shear stresses thereby in shear flow of LC polymer liquids lead to internal vortex flow and rotational flow. The conclusion could be of theoretical meaning for the modern liquid crystalline display technology. By using the equation, extrusion-extensional flows of the fluid are studied for fiber spinning of LC polymer melts, the elongational viscosity vs. extension rate with variation of shear rate is given in figures. A considerable increase of elongational viscosity and bifurcation behaviour are observed when the orientational motion of the director vector is considered. The contraction of extru- date of LC polymer melts is caused by the high elongational viscosity. For anisotropic viscoelastic fluids, an important advance has been made in the investigation on the constitutive equation on the basis of which a seriesof new anisotropic non-Newtonian fluid problems can be addressed.