BACKGROUND: Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) can display the site of lumbar spinal stenosis and predict nervous compression at the morphological level; however, pure morphological cha...BACKGROUND: Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) can display the site of lumbar spinal stenosis and predict nervous compression at the morphological level; however, pure morphological changes cannot reflect functional alterations in a compressed nerve root. Dermatomal somatosensory evoked potential (DSEP) provides a means to assess the functional state of a nerve root. OBJECTIVE: To evaluate the clinical significance of DSEP, assessing the degree of nerve root injury following lumbar spinal stenosis. DESIGN, TIME AND SETTING: A case-control study was performed in the Department of Orthopaedic Surgery, Hainan People's Hospital, China, between September 2004 and December 2007. PARTICIPANTS: Forty-seven patients diagnosed with lumbar spinal stenosis by CT or MRI were selected as the case group; fifty healthy subjects were collected as the control group. METHODS: A KEYPOINT myoelectric evoked potential apparatus (DANTEC Company, Denmark) was used to measure DSEP, and stimulative spots were determined in accordance with the skin key sensory spot standards established by The American Spinal Injury Association: L4 in the medial malleolus, L5 in the third metatarsophalangeal joint of the dorsum of foot and S1 in the lateral heel. The needle electrode used as the recording electrode was located at the Cz point of the cranium, and the reference electrode at the Fz point. MAIN OUTCOME MEASURES: Latency of the P40 peak of DSEP, P1-N1 amplitude, P40 waveform and differentiation and disappearance of various waves. RESULTS: The sensitivity and diagnostic concurrence with surgery of nerve root injury following lumbar spinal stenosis evaluated by DSEP was 95.7 %. P40 latencies at L4, L5 and S1 in the case group were significantly longer than in the control group (P 〈 0.05), and the P1-N1 amplitude in the case group was significantly lower than the control group (P 〈 0.05-0.01). Nerve root injury was categorized according to DSEP latency as follows: severe damage (disappearance of the P40 wave in 103 dermatomes), moderate damage (prolongation of the P40 peak latency ≥ 3.0 times the standard deviation of the normal mean in 60 dermatomes) and mild damage (prolongation of the P40 peak latency ≥ 2.5 times the standard deviation of the normal mean in 31 dermatomes). CONCLUSION: DSEP can be used to determine the severity of nerve root injury following lumbar spinal stenosis with high sensitivity and specificity.展开更多
BACKGROUND: It has been reported that dermatomal somatosensory evoked potential (DSEP) can be used for diagnosing nerve root injury in patients with lumbar disc herniation (LDH), and that 83% 95% of patients suff...BACKGROUND: It has been reported that dermatomal somatosensory evoked potential (DSEP) can be used for diagnosing nerve root injury in patients with lumbar disc herniation (LDH), and that 83% 95% of patients suffer from the disease. Body height correction is not performed prior to determinations of latency and latency difference between the healthy and affected sides. However, latency noticeably correlates to body height. OBJECTIVE: This study aims to determine the lumbosacral nerve root injury in patients with LDH by DSEP, and to evaluate the sensitivity of the DSEP difference between the healthy and affected sides using a diagnostic index following body height correction. DESIGN: A case-control observation. SETTING: Department of Orthopedic Surgery, Hainan Provincial People's Hospital. PARTICIPANTS: Ninety-six patients, comprised of 67 males and 29 females, with an average age of 43 years and a mean body height of 1.65 m (range 1.48-1.81 m), were recruited for this study. These patients suffered from unilateral lower limb radiation pain and received treatment at the Department of Orthopedic Surgery, Hainan Provincial People's Hospital between January 2004 and December 2006. All patients were confirmed to suffer from LDH at the L3-4, L-5, and/or Ls-SI by CT and/or MRI examinations. Central nervous system diseases were excluded. In order to obtain a normal reference value, DSEP was determined for a group of 50 subjects, who concurrently received health examinations in the same department. The subjects had no previous history of back leg pain or nervous system disease. The group of healthy controls included 26 males and 24 females, with an average age of 37 years and a mean body height of 1.63 m (range 1.50-1.80 m). Written informed consent was obtained from all subjects for laboratory samples. The protocol was approved by the Hospital's Ethics Committees. DSEP was determined with myoelectricity-evoked potential equipment (Keypoint, Batch No. 9020A0042591, Dantec Company, Denmark). METHODS: DSEP of patients with LDH was determined. Constant-voltage square pulse stimulation was used to determine DSEP, with the following parameters: a pulse wave width of 0.2 milliseconds; a saddle-like stimulating electrode; a stimulation intensity 3 times greater than the sensation threshold; a stimulation frequency of 1.5 Hz; mean superposition greater than 100 times; and inter-electrode impedance 〈 5 k Q. The stimulation point was a skin key sensation point confirmed by the American Spinal Injury Association, i.e. L4 at medial malleolus, L5 at the third metatarsophalangeal joint on the dorsum of the foot, and SI at the lateral heel. The recording electrode was a needle electrode, the recording point was Cz, and the reference electrode was Fz. DSEP latency of P40, and latency differences of P40, between the healthy side and the affected side, were determined. DSEP at L4, L5, and S1 nerve roots of the lower limbs of 50 healthy controls were bilaterally determined. The normal values of P40 latency and P40 N50 amplitude were statistically obtained. MAIN OUTCOME MEASURES: Determination of DSEP values. RESULTS: Ninety-six patients with LDH and fifty healthy controls participated in the final analysis. In the healthy controls, the amplitude of DSEP varied greatly, with a mean amplitude co-efficient of variation of 58% for L4, L5, and SI dermatomes. P40 latency was stable, with a mean latency coefficient of variation of 4.7%. In patients with LDH, the P40 wave disappeared. P40 latency was 2.5 times prolonged compared to normal mean value. P40 latency difference between the healthy and the affected side was 2.5 times higher than the normal mean value of the healthy side. CONCLUSION: DSEP can reflect the functional status of lumbosacral nerve root. P40 latency difference between the healthy side and the affected side is the most sensitive diagnosis index for patients with LDH suffering from unilateral lower limb radiation pain.展开更多
Herpes zoster is caused by reactivation of latent varicella-zoster virus that resides in a dorsal root ganglion. Herpes zoster can develop at any time after a primary infection or varicella vaccination. The incidence ...Herpes zoster is caused by reactivation of latent varicella-zoster virus that resides in a dorsal root ganglion. Herpes zoster can develop at any time after a primary infection or varicella vaccination. The incidence among children is approximately 110 per 100,000 person-years. Clinically, herpes zoster is characterized by a painful, unilateral vesicular eruption in a restricted dermatomal distribution. In young children, herpes zoster has a predilection for areas supplied by the cervical and sacral dermatomes. Herpes zoster tends to be milder in children than that in adults. Also, vaccine-associated herpes zoster is milder than herpes zoster after wild-type varicella. The diagnosis of herpes zoster is mainly made clinically, based on a distinct clinical appearance. The most common complications are secondary bacterial infection, depigmentation, and scarring. Chickenpox may develop in susceptible individuals exposed to herpes zoster. Oral acyclovir should be considered for uncomplicated herpes zoster in immunocompetent children. Intravenous acyclovir is the treatment of choice for immunocompromised children who are at risk for disseminated disease. The medication should be administered ideally within 72 hours of rash onset.展开更多
in this study, conical somatosensory evoked potentials (SEPs)following electrical stimulation of the skin of LS and SI dermatomes were recorded cephalically and observed in 19 patients with clinically proved unilatera...in this study, conical somatosensory evoked potentials (SEPs)following electrical stimulation of the skin of LS and SI dermatomes were recorded cephalically and observed in 19 patients with clinically proved unilateral L5 or S1 nerve root compression, and the results were compared with those of the control group or 20 healthy volunteers and showed that dermatomal SEPs were abnormal in 12 with the rate of 63%,most or which showed abnomalities or the lateral latency difference. It is concluded that dermatomal SEP is a useful addition to the diagnosis or lumbosacral nerve root compression. When the unilateral nerve root is compressed the lateral latency dirference is a most sensitive criterion for indicating abnomality.展开更多
AIM: To assess the use of a simple split skin graft harvesting technique, requiring only a scalpel and a swab.METHODS: During the last 8 mo, we operated on a consecutive series of 52 patients(30 males, 22 females) wit...AIM: To assess the use of a simple split skin graft harvesting technique, requiring only a scalpel and a swab.METHODS: During the last 8 mo, we operated on a consecutive series of 52 patients(30 males, 22 females) with a mean age of 60 years(33-80). We used the technique we present in order to cover small skin defects. All procedures were performed under local anesthesia. Thirty-seven patients underwent bedside surgery, 8 patients were operated on in the outpatient department and the remaining 7 had their graft harvested in the operating room. After antiseptic preparation of the donor site, the margins of the graft were drawn by the use of a surgical marker. A No 15 scalpel was used for the graft elevation, under constant traction with a moist swab.RESULTS: All procedures were completed successfully without immediate complications. The patients tolerated the procedure well. The mean operative time was 15 min. Twenty-four donor sites were left to heal by secondary intention, whereas 28 were sutured with interrupted 3/0 silk sutures in order to heal by primary intention. All 24 sites that were left to heal by secondary intention healed completely in approximately 14 d. For the sites that were sutured, the sutures were removed on the 10 th postoperative day. Out of the 52 operated cases, 6 patients(11%) developed complications. In 4 patients, the split thickness skin grafts were partially lost, whereas in 2 patients the grafts were completely lost. Wound dehiscence was observed in 2 patients, which were treated with local antiseptic and antibiotic therapy.CONCLUSION: The skin graft technique described is simple, costless and effective and can be performed even on an outpatient basis, without the need for special equipment.展开更多
Introduction: Many women think about reduction mammaplasty for different reasons. The effect of surgery on the beast sensibility is one of the greatest concerns after reconstructive reductive breast surgery through it...Introduction: Many women think about reduction mammaplasty for different reasons. The effect of surgery on the beast sensibility is one of the greatest concerns after reconstructive reductive breast surgery through its affect on patient’s social life and psychological health. The dermatomal somatosensory evoked potential (D-SEP) is a new method to quantitatively evaluate breast sensibility. Patients and Methods: Twenty-five women enrolled in this study presenting with breast enlargement, underwent mammary reduction by using the inferior pyramidal breast reduction technique using the same operative technique described by Robbins with some modifications. All D-SEP amplitudes and latencies were calculated preoperatively and then were reassessed six and twelve months post-surgery in each breast. Result: The results revealed that there is a significant difference in the D-SEP latency pre- and post-operatively. The statistically significant decrease in latency and the breast size demonstrated indicates that the sensibility improved after breast reduction surgery both at six and twelve months. There is also a significant increase in the D-SEP amplitude pre- and post-operatively. The negative and statistically significant increase in amplitude with the decrease in breast size demonstrated indicates that the sensibility improved after breast reduction surgery both at six and twelve months. Conclusion: This study concluded that breast sensibility will improve after breast reduction as indicated by significant reduction of D-SEP latencies and increase of its amplitudes. Our results confirm an inverse relationship between breast size and sensibility, with improvement in sensibility after breast reduction.展开更多
基金the National Natural Science Foundation of Hainan Province,No.30318
文摘BACKGROUND: Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) can display the site of lumbar spinal stenosis and predict nervous compression at the morphological level; however, pure morphological changes cannot reflect functional alterations in a compressed nerve root. Dermatomal somatosensory evoked potential (DSEP) provides a means to assess the functional state of a nerve root. OBJECTIVE: To evaluate the clinical significance of DSEP, assessing the degree of nerve root injury following lumbar spinal stenosis. DESIGN, TIME AND SETTING: A case-control study was performed in the Department of Orthopaedic Surgery, Hainan People's Hospital, China, between September 2004 and December 2007. PARTICIPANTS: Forty-seven patients diagnosed with lumbar spinal stenosis by CT or MRI were selected as the case group; fifty healthy subjects were collected as the control group. METHODS: A KEYPOINT myoelectric evoked potential apparatus (DANTEC Company, Denmark) was used to measure DSEP, and stimulative spots were determined in accordance with the skin key sensory spot standards established by The American Spinal Injury Association: L4 in the medial malleolus, L5 in the third metatarsophalangeal joint of the dorsum of foot and S1 in the lateral heel. The needle electrode used as the recording electrode was located at the Cz point of the cranium, and the reference electrode at the Fz point. MAIN OUTCOME MEASURES: Latency of the P40 peak of DSEP, P1-N1 amplitude, P40 waveform and differentiation and disappearance of various waves. RESULTS: The sensitivity and diagnostic concurrence with surgery of nerve root injury following lumbar spinal stenosis evaluated by DSEP was 95.7 %. P40 latencies at L4, L5 and S1 in the case group were significantly longer than in the control group (P 〈 0.05), and the P1-N1 amplitude in the case group was significantly lower than the control group (P 〈 0.05-0.01). Nerve root injury was categorized according to DSEP latency as follows: severe damage (disappearance of the P40 wave in 103 dermatomes), moderate damage (prolongation of the P40 peak latency ≥ 3.0 times the standard deviation of the normal mean in 60 dermatomes) and mild damage (prolongation of the P40 peak latency ≥ 2.5 times the standard deviation of the normal mean in 31 dermatomes). CONCLUSION: DSEP can be used to determine the severity of nerve root injury following lumbar spinal stenosis with high sensitivity and specificity.
基金the Natural Science Foundation of Hainan Province, No. 30318
文摘BACKGROUND: It has been reported that dermatomal somatosensory evoked potential (DSEP) can be used for diagnosing nerve root injury in patients with lumbar disc herniation (LDH), and that 83% 95% of patients suffer from the disease. Body height correction is not performed prior to determinations of latency and latency difference between the healthy and affected sides. However, latency noticeably correlates to body height. OBJECTIVE: This study aims to determine the lumbosacral nerve root injury in patients with LDH by DSEP, and to evaluate the sensitivity of the DSEP difference between the healthy and affected sides using a diagnostic index following body height correction. DESIGN: A case-control observation. SETTING: Department of Orthopedic Surgery, Hainan Provincial People's Hospital. PARTICIPANTS: Ninety-six patients, comprised of 67 males and 29 females, with an average age of 43 years and a mean body height of 1.65 m (range 1.48-1.81 m), were recruited for this study. These patients suffered from unilateral lower limb radiation pain and received treatment at the Department of Orthopedic Surgery, Hainan Provincial People's Hospital between January 2004 and December 2006. All patients were confirmed to suffer from LDH at the L3-4, L-5, and/or Ls-SI by CT and/or MRI examinations. Central nervous system diseases were excluded. In order to obtain a normal reference value, DSEP was determined for a group of 50 subjects, who concurrently received health examinations in the same department. The subjects had no previous history of back leg pain or nervous system disease. The group of healthy controls included 26 males and 24 females, with an average age of 37 years and a mean body height of 1.63 m (range 1.50-1.80 m). Written informed consent was obtained from all subjects for laboratory samples. The protocol was approved by the Hospital's Ethics Committees. DSEP was determined with myoelectricity-evoked potential equipment (Keypoint, Batch No. 9020A0042591, Dantec Company, Denmark). METHODS: DSEP of patients with LDH was determined. Constant-voltage square pulse stimulation was used to determine DSEP, with the following parameters: a pulse wave width of 0.2 milliseconds; a saddle-like stimulating electrode; a stimulation intensity 3 times greater than the sensation threshold; a stimulation frequency of 1.5 Hz; mean superposition greater than 100 times; and inter-electrode impedance 〈 5 k Q. The stimulation point was a skin key sensation point confirmed by the American Spinal Injury Association, i.e. L4 at medial malleolus, L5 at the third metatarsophalangeal joint on the dorsum of the foot, and SI at the lateral heel. The recording electrode was a needle electrode, the recording point was Cz, and the reference electrode was Fz. DSEP latency of P40, and latency differences of P40, between the healthy side and the affected side, were determined. DSEP at L4, L5, and S1 nerve roots of the lower limbs of 50 healthy controls were bilaterally determined. The normal values of P40 latency and P40 N50 amplitude were statistically obtained. MAIN OUTCOME MEASURES: Determination of DSEP values. RESULTS: Ninety-six patients with LDH and fifty healthy controls participated in the final analysis. In the healthy controls, the amplitude of DSEP varied greatly, with a mean amplitude co-efficient of variation of 58% for L4, L5, and SI dermatomes. P40 latency was stable, with a mean latency coefficient of variation of 4.7%. In patients with LDH, the P40 wave disappeared. P40 latency was 2.5 times prolonged compared to normal mean value. P40 latency difference between the healthy and the affected side was 2.5 times higher than the normal mean value of the healthy side. CONCLUSION: DSEP can reflect the functional status of lumbosacral nerve root. P40 latency difference between the healthy side and the affected side is the most sensitive diagnosis index for patients with LDH suffering from unilateral lower limb radiation pain.
文摘Herpes zoster is caused by reactivation of latent varicella-zoster virus that resides in a dorsal root ganglion. Herpes zoster can develop at any time after a primary infection or varicella vaccination. The incidence among children is approximately 110 per 100,000 person-years. Clinically, herpes zoster is characterized by a painful, unilateral vesicular eruption in a restricted dermatomal distribution. In young children, herpes zoster has a predilection for areas supplied by the cervical and sacral dermatomes. Herpes zoster tends to be milder in children than that in adults. Also, vaccine-associated herpes zoster is milder than herpes zoster after wild-type varicella. The diagnosis of herpes zoster is mainly made clinically, based on a distinct clinical appearance. The most common complications are secondary bacterial infection, depigmentation, and scarring. Chickenpox may develop in susceptible individuals exposed to herpes zoster. Oral acyclovir should be considered for uncomplicated herpes zoster in immunocompetent children. Intravenous acyclovir is the treatment of choice for immunocompromised children who are at risk for disseminated disease. The medication should be administered ideally within 72 hours of rash onset.
文摘in this study, conical somatosensory evoked potentials (SEPs)following electrical stimulation of the skin of LS and SI dermatomes were recorded cephalically and observed in 19 patients with clinically proved unilateral L5 or S1 nerve root compression, and the results were compared with those of the control group or 20 healthy volunteers and showed that dermatomal SEPs were abnormal in 12 with the rate of 63%,most or which showed abnomalities or the lateral latency difference. It is concluded that dermatomal SEP is a useful addition to the diagnosis or lumbosacral nerve root compression. When the unilateral nerve root is compressed the lateral latency dirference is a most sensitive criterion for indicating abnomality.
文摘AIM: To assess the use of a simple split skin graft harvesting technique, requiring only a scalpel and a swab.METHODS: During the last 8 mo, we operated on a consecutive series of 52 patients(30 males, 22 females) with a mean age of 60 years(33-80). We used the technique we present in order to cover small skin defects. All procedures were performed under local anesthesia. Thirty-seven patients underwent bedside surgery, 8 patients were operated on in the outpatient department and the remaining 7 had their graft harvested in the operating room. After antiseptic preparation of the donor site, the margins of the graft were drawn by the use of a surgical marker. A No 15 scalpel was used for the graft elevation, under constant traction with a moist swab.RESULTS: All procedures were completed successfully without immediate complications. The patients tolerated the procedure well. The mean operative time was 15 min. Twenty-four donor sites were left to heal by secondary intention, whereas 28 were sutured with interrupted 3/0 silk sutures in order to heal by primary intention. All 24 sites that were left to heal by secondary intention healed completely in approximately 14 d. For the sites that were sutured, the sutures were removed on the 10 th postoperative day. Out of the 52 operated cases, 6 patients(11%) developed complications. In 4 patients, the split thickness skin grafts were partially lost, whereas in 2 patients the grafts were completely lost. Wound dehiscence was observed in 2 patients, which were treated with local antiseptic and antibiotic therapy.CONCLUSION: The skin graft technique described is simple, costless and effective and can be performed even on an outpatient basis, without the need for special equipment.
文摘Introduction: Many women think about reduction mammaplasty for different reasons. The effect of surgery on the beast sensibility is one of the greatest concerns after reconstructive reductive breast surgery through its affect on patient’s social life and psychological health. The dermatomal somatosensory evoked potential (D-SEP) is a new method to quantitatively evaluate breast sensibility. Patients and Methods: Twenty-five women enrolled in this study presenting with breast enlargement, underwent mammary reduction by using the inferior pyramidal breast reduction technique using the same operative technique described by Robbins with some modifications. All D-SEP amplitudes and latencies were calculated preoperatively and then were reassessed six and twelve months post-surgery in each breast. Result: The results revealed that there is a significant difference in the D-SEP latency pre- and post-operatively. The statistically significant decrease in latency and the breast size demonstrated indicates that the sensibility improved after breast reduction surgery both at six and twelve months. There is also a significant increase in the D-SEP amplitude pre- and post-operatively. The negative and statistically significant increase in amplitude with the decrease in breast size demonstrated indicates that the sensibility improved after breast reduction surgery both at six and twelve months. Conclusion: This study concluded that breast sensibility will improve after breast reduction as indicated by significant reduction of D-SEP latencies and increase of its amplitudes. Our results confirm an inverse relationship between breast size and sensibility, with improvement in sensibility after breast reduction.