Objective and quantitative assessment of skin conditions is essential for cosmeceutical studies and research on skin aging and skin regeneration.Various handcraft-based image processing methods have been proposed to e...Objective and quantitative assessment of skin conditions is essential for cosmeceutical studies and research on skin aging and skin regeneration.Various handcraft-based image processing methods have been proposed to evaluate skin conditions objectively,but they have unavoidable disadvantages when used to analyze skin features accurately.This study proposes a hybrid segmentation scheme consisting of Deeplab v3+with an Inception-ResNet-v2 backbone,LightGBM,and morphological processing(MP)to overcome the shortcomings of handcraft-based approaches.First,we apply Deeplab v3+with an Inception-ResNet-v2 backbone for pixel segmentation of skin wrinkles and cells.Then,LightGBM and MP are used to enhance the pixel segmentation quality.Finally,we determine several skin features based on the results of wrinkle and cell segmentation.Our proposed segmentation scheme achieved a mean accuracy of 0.854,mean of intersection over union of 0.749,and mean boundary F1 score of 0.852,which achieved 1.1%,6.7%,and 14.8%improvement over the panoptic-based semantic segmentation method,respectively.展开更多
Segmentation accuracy of dermoscopy images is important in the computer-aided diagnosis of skin cancer and a wide variety of segmentation methods for dermoscopy images have been developed. Considering that each method...Segmentation accuracy of dermoscopy images is important in the computer-aided diagnosis of skin cancer and a wide variety of segmentation methods for dermoscopy images have been developed. Considering that each method has its strengths and weaknesses, a novel adaptive segmentation framework based on multi-classification model is proposed for dermoscopy images. Firstly, five patterns of images are summarized according to the factors influencing segmentation. Then the matching relation is established between each image pattern and its optimal segmentationmethod. Next, the given image is classified into one of the five patterns by the multi-classification model based on BP neural network. Finaily, the optimal segmentation method for this image is selected according to the matching relation, and then the image is effectively segmented. Experiments show that the proposed method delivers better accuracy and more robust segmentation results compared with the other seven state-of-the-art methods.展开更多
Biomedical image analysis has been exploited considerably by recent technology involvements,carrying about a pattern shift towards‘automation’and‘error free diagnosis’classification methods with markedly improved ...Biomedical image analysis has been exploited considerably by recent technology involvements,carrying about a pattern shift towards‘automation’and‘error free diagnosis’classification methods with markedly improved accurate diagnosis productivity and cost effectiveness.This paper proposes an automated deep learning model to diagnose skin disease at an early stage by using Dermoscopy images.The proposed model has four convolutional layers,two maxpool layers,one fully connected layer and three dense layers.All the convolutional layers are using the kernel size of 3∗3 whereas the maxpool layer is using the kernel size of 2∗2.The dermoscopy images are taken from the HAM10000 dataset.The proposed model is compared with the three different models of ResNet that are ResNet18,ResNet50 and ResNet101.The models are simulated with 32 batch size and Adadelta optimizer.The proposed model has obtained the best accuracy value of 0.96 whereas the ResNet101 model has obtained 0.90,the ResNet50 has obtained 0.89 and the ResNet18 model has obtained value as 0.86.Therefore,features obtained from the proposed model are more capable for improving the classification performance of multiple skin disease classes.This model can be used for early diagnosis of skin disease and can also act as a second opinion tool for dermatologists.展开更多
基金This work was supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2020R1F1A1074885)was supported by the Brain Korea 21 Project in 2021(No.4199990114242).
文摘Objective and quantitative assessment of skin conditions is essential for cosmeceutical studies and research on skin aging and skin regeneration.Various handcraft-based image processing methods have been proposed to evaluate skin conditions objectively,but they have unavoidable disadvantages when used to analyze skin features accurately.This study proposes a hybrid segmentation scheme consisting of Deeplab v3+with an Inception-ResNet-v2 backbone,LightGBM,and morphological processing(MP)to overcome the shortcomings of handcraft-based approaches.First,we apply Deeplab v3+with an Inception-ResNet-v2 backbone for pixel segmentation of skin wrinkles and cells.Then,LightGBM and MP are used to enhance the pixel segmentation quality.Finally,we determine several skin features based on the results of wrinkle and cell segmentation.Our proposed segmentation scheme achieved a mean accuracy of 0.854,mean of intersection over union of 0.749,and mean boundary F1 score of 0.852,which achieved 1.1%,6.7%,and 14.8%improvement over the panoptic-based semantic segmentation method,respectively.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant Nos. 61471016, 61371134 and 61271436).
文摘Segmentation accuracy of dermoscopy images is important in the computer-aided diagnosis of skin cancer and a wide variety of segmentation methods for dermoscopy images have been developed. Considering that each method has its strengths and weaknesses, a novel adaptive segmentation framework based on multi-classification model is proposed for dermoscopy images. Firstly, five patterns of images are summarized according to the factors influencing segmentation. Then the matching relation is established between each image pattern and its optimal segmentationmethod. Next, the given image is classified into one of the five patterns by the multi-classification model based on BP neural network. Finaily, the optimal segmentation method for this image is selected according to the matching relation, and then the image is effectively segmented. Experiments show that the proposed method delivers better accuracy and more robust segmentation results compared with the other seven state-of-the-art methods.
基金This work was supported by Taif university Researchers Supporting Project Number(TURPS-2020/114),Taif University,Taif,Saudi Arabia.
文摘Biomedical image analysis has been exploited considerably by recent technology involvements,carrying about a pattern shift towards‘automation’and‘error free diagnosis’classification methods with markedly improved accurate diagnosis productivity and cost effectiveness.This paper proposes an automated deep learning model to diagnose skin disease at an early stage by using Dermoscopy images.The proposed model has four convolutional layers,two maxpool layers,one fully connected layer and three dense layers.All the convolutional layers are using the kernel size of 3∗3 whereas the maxpool layer is using the kernel size of 2∗2.The dermoscopy images are taken from the HAM10000 dataset.The proposed model is compared with the three different models of ResNet that are ResNet18,ResNet50 and ResNet101.The models are simulated with 32 batch size and Adadelta optimizer.The proposed model has obtained the best accuracy value of 0.96 whereas the ResNet101 model has obtained 0.90,the ResNet50 has obtained 0.89 and the ResNet18 model has obtained value as 0.86.Therefore,features obtained from the proposed model are more capable for improving the classification performance of multiple skin disease classes.This model can be used for early diagnosis of skin disease and can also act as a second opinion tool for dermatologists.