Isothermal hot compression experiments were conducted on homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy to investigate hot deformation behavior at the temperature range of 673-773 K and the strain rate range of 0.001-1 s...Isothermal hot compression experiments were conducted on homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy to investigate hot deformation behavior at the temperature range of 673-773 K and the strain rate range of 0.001-1 s^(-1)by using a Gleeble-1500D thermo mechanical simulator.Metallographic characterization on samples deformed to true strain of 0.70 illustrates the occurrence of flow localization and/or microcrack at deformation conditions of 673 K/0.01 s^(-1),673 K/1 s^(-1)and 698 K/1 s^(-1),indicating that these three deformation conditions should be excluded during hot working of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy.Based on the measured true stress-strain data,the strain-compensated Arrhenius constitutive model was constructed and then incorporated into UHARD subroutine of ABAQUS software to study hot deformation process of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy.By comparison with measured force-displacement curves,the predicted results can describe well the rheological behavior of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy,verifying the validity of finite element simulation of hot compression process with this complicated constitutive model.Numerical results demonstrate that the distribution of values of material parameters(α,n,Q and ln A)within deformed sample is inhomogeneous.This issue is directly correlated to the uneven distribution of equivalent plastic strain due to the friction effect.Moreover,at a given temperature the increase of strain rate would result in the decrease of equivalent plastic strain within the central region of deformed sample,which hinders the occurrence of dynamic recrystallization(DRX).展开更多
The practice of exploration and production has proved that explosives are excited in different surrounding rocks and the seismic wavelets collected have different characteristics. In this paper, by establishing a nume...The practice of exploration and production has proved that explosives are excited in different surrounding rocks and the seismic wavelets collected have different characteristics. In this paper, by establishing a numerical model of the explosion in the well, using finite element analysis technology for numerical simulation, the simulation calculated the stress structure in the near-source area of the earthquake excitation, and extracted the seismic wavelet. The results show that the simulation seismic wavelet characteristics of different thin interbedded sand and mudstone structures have changed significantly. Through excitation simulation, the amplitude and spectrum information of seismic wavelets can be compared and analyzed, and the excitation parameters can be optimized. .展开更多
This study relies on the project about Jining to Tongliao railway electrification reconstruction project.The dynamic simulation model of the pantograph-OCS(overhead contact system)suitable for Jitong project is design...This study relies on the project about Jining to Tongliao railway electrification reconstruction project.The dynamic simulation model of the pantograph-OCS(overhead contact system)suitable for Jitong project is designed,according to the corresponding numerical calculation method and workflow.Firstly,We establish the pantograph and catenary′s BIM models,and the parameters related to the dynamic simulation of the pantograph system are attached to the BIM model.Then,the BIM model is transformed into a mechanical analysis model,which is input into the dynamic simulation software of pantograph-OCS.The rationality of the design scheme of the pantograph system is verified through simulation.展开更多
Two full 3D steady mathematical models are developed by finite element method (FEM) to calcalate coupled physics fields. the electro-magnetic model is built and solved first and so is the fluid motion model with the...Two full 3D steady mathematical models are developed by finite element method (FEM) to calcalate coupled physics fields. the electro-magnetic model is built and solved first and so is the fluid motion model with the acquired electromagnetic force as source body forces in Navier-Stokes equations. Effects caused by the ferromagnetic shell, busbar system around, and open boundary problem as well as inside induced current were considered in terms of the magnetic field. Furthermore, a new modeling method is found to set up solid models and then mesh them entirely with so-called structuralized grids, namely hex-mesh. Examples of 75kA prebaked cell with two kinds of busbar arrangements are presented. Results agree with those disclosed in the literature and confirm that the coupled simulation is valid. It is also concluded that the usage of these models facilitates the consistent analysis of the electric field to magnetic field and then flow motion to the greater extent, local distributions of current density and magnetic flux density are very much dependent on the cell structure, the steel shell is a shield to reduce the magnetic field and flow pattern is two dimensional in the main body of the metal pad.展开更多
To investigate the effects of billet geometry on the cold precision forging process of a helical gear, six different billet geometries were designed utilizing the relief-hole principle. And the influences of the bille...To investigate the effects of billet geometry on the cold precision forging process of a helical gear, six different billet geometries were designed utilizing the relief-hole principle. And the influences of the billet geometry on the forming load and the deformation uniformity were analyzed by three-dimensional (3D) finite element method (FEM) under the commercial software DEFORM 3D. The billet geometry was optimized to meet lower forming load and better deformation uniformity requirement. Deformation mechanism was studied through the distribution of flow velocity field and effective strain field. The forging experiments of the helical gear were successfully performed using lead material as a model material under the same process conditions used in the FE simulations. The results show that the forming load decreases as the diameter of relief-hole do increases, but the effect of do on the deformation uniformity is very complicated. The forming load is lower and the deformation is more uniform when do is 10 mm.展开更多
Being aimed at the ground subsidence due to underground coal mining,a numerical model of rock was established and an appropriate method of numerical simulation was put forward.Using the measured subsidence data on the...Being aimed at the ground subsidence due to underground coal mining,a numerical model of rock was established and an appropriate method of numerical simulation was put forward.Using the measured subsidence data on the ground,the equivalent mechanical parameters of the rock stratums can be back-calculated by the properly treatment of coal excavation area,then the ground subsidence of other coal mining area can be predicted by FFM.It provided reference for the treatment of the buildings on the ground of this colliery.展开更多
Materials with the same elastic modulus E and representative stress and strain (σr,εr) present similar indentation-loading curves, whatever the value of strain hardening exponent n. Based on this definition, a goo...Materials with the same elastic modulus E and representative stress and strain (σr,εr) present similar indentation-loading curves, whatever the value of strain hardening exponent n. Based on this definition, a good approach was proposed to extract the plastic properties or constitutive equations of metals from nanoindentation test combining finite element simulation. Firstly, without consideration of strain hardening, the representative stress was determined by varying assumed representative stress over a wide range until a good agreement was reached between the computed and experimental loading curves. Similarly, the corresponding representative strain was determined with different hypothetical values of strain hardening exponent in the range of 0-0.6. Through modulating assumed strain hardening exponent values to make the computed unloading curve coincide with that of the experiment, the real strain hardening exponent was acquired. Once the strain hardening exponent was determined, the initial yield stress ay of metals could be obtained by the power law constitution. The validity of the proposed methodology was verified by three real metals: AISI 304 steel, Fe andA1 alloy.展开更多
Single-point incremental forming (SPIF) is an innovational sheet metal forming method without dedicated dies, which belongs to rapid prototyping technology. In generalizing the SPIF of sheet metal, the deformation a...Single-point incremental forming (SPIF) is an innovational sheet metal forming method without dedicated dies, which belongs to rapid prototyping technology. In generalizing the SPIF of sheet metal, the deformation analysis on forming process becomes an important and useful method for the planning of shell products, the choice of material, the design of the forming process and the planning of the forming tool. Using solid brick elements, the finite element method(FEM) model of truncated pyramid was established. Based on the theory of anisotropy and assumed strain formulation, the SPIF processes with different parameters were simulated. The resulted comparison between the simulations and the experiments shows that the FEM model is feasible and effective. Then, according to the simulated forming process, the deformation pattern of SPIF can be summarized as the combination of plane-stretching deformation and bending deformation. And the study about the process parameters' impact on deformation shows that the process parameter of interlayer spacing is a dominant factor on the deformation. Decreasing interlayer spacing, the strain of one step decreases and the formability of blank will be improved. With bigger interlayer spacing, the plastic deformation zone increases and the forming force will be bigger.展开更多
During the process of finite element simulation of precision warm forging, the selection of friction models has a direct effect on the precision accuracy of finite element simulation results. Among all the factors whi...During the process of finite element simulation of precision warm forging, the selection of friction models has a direct effect on the precision accuracy of finite element simulation results. Among all the factors which influence the selection of friction models, the distribution rule of normal stress at the tool-workpiece interface is a key one. To find out the distribution rule of normal stress at the tool-workpiece interface, this paper has made a systematic research on three typical plastic deformation processes: forward extrusion, backward extrusion, and lateral extrusion by a method of finite element simulation. Then on the base of synthesizing and correcting traditional friction models, a new general friction model which is fit for warm extrusion is developed at last.展开更多
A thermo-mechanical coupling.finite element model was built to investigate the inertia friction welding of GH4169 bars. The remeshing and map solution techniques were adopted. Ttle whole welding process was investigat...A thermo-mechanical coupling.finite element model was built to investigate the inertia friction welding of GH4169 bars. The remeshing and map solution techniques were adopted. Ttle whole welding process was investigated by adopting an innovative heat generation model and the flywheel rotational speed measured via the experiment. The simulated evolution of axial shortening shows a good agreement with the experiment. In addition, extensive .strain concentration presents in the interface and flash, and the largest ,strain exists near the flash root. Moreover, an intere.sting thermal reflux phenomenon during the cooling stage was found.展开更多
In the process of thin-wall parts assembly for an antenna,the parts assembly deformation deviation is occurring due to the riveting assembly.In view of the riveting assembly deformation problems,it can be analyzed thr...In the process of thin-wall parts assembly for an antenna,the parts assembly deformation deviation is occurring due to the riveting assembly.In view of the riveting assembly deformation problems,it can be analyzed through transient and static simulation.In this work,the theoretical deformation model for riveting assembly is established with round head rivet.The simulation analysis for riveting deformation is carried out with the riveting assembly piece including four rivets,which comparing with the measuring points experiment results of riveting test piece through dealing with the experimental data using the point coordinate transform method and the space line fitting method.Simultaneously,the deformation deviation of the overall thin-wall parts assembly structure is analyzed through finite element simulation;and its results are verified by the measuring experiment for riveting assembly with the deformation deviation of some key points on the thin-wall parts.Through the comparison analysis,it is shown that the simulation results agree well with the experimental results,which proves the correctness and effectiveness of the theoretical analysis,simulation results and the given experiment data processing method.Through the study on the riveting assembly for thin-wall parts,it will provide a theoretical foundation for improving thin-wall parts assembly quality of large antenna in future.展开更多
A rate dependent crystal plasticity constitutive model considering self and latent hardening in finite element analysis was developed to simulate rolling textures of pure aluminum. By changing the assignment of orient...A rate dependent crystal plasticity constitutive model considering self and latent hardening in finite element analysis was developed to simulate rolling textures of pure aluminum. By changing the assignment of orientations to finite elements, i.e. assigning the same set of orientations to all elements or different orientations to different elements, the influences of grain interaction on the formation of rolling textures were numerically simulated with this kind of crystal plasticity finite element model. The simulation results reveal that the grains without considering grain interaction rotate faster than those considering grain interaction, and the rotation of grain boundary is slowed down due to the grain interaction. For a good simulation more elements should be assigned to one grain, in which the effects of both the boundary and interior parts of grain contribute to the formation of rolling textures.展开更多
The deep drawing of titanium thin-walled surface part was simulated based on a self-developed three-dimensional finite element model. After an investigation on forming rules, a virtual orthogonal experimental design w...The deep drawing of titanium thin-walled surface part was simulated based on a self-developed three-dimensional finite element model. After an investigation on forming rules, a virtual orthogonal experimental design was adopted to determine the significance of processing parameters, such as die radius, blank holder force, and friction coefficient, on the forming process. The distributions of thickness and equivalent plastic strain of the drawn part were evaluated. The results show that die radius has a relative major influence on the deep drawing process, followed by friction coefficient and blank holder force.展开更多
Based on CT scanning pictures from a volunteer's knee joint, a three-dimensional finite element model of the healthy human knee joint is constructed including complete femur, tibia, fibular, patellar and the main car...Based on CT scanning pictures from a volunteer's knee joint, a three-dimensional finite element model of the healthy human knee joint is constructed including complete femur, tibia, fibular, patellar and the main cartilage and ligaments. This model was validated using experimental and numerical results obtained from other authors. The pressure distribution of contact surfaces of knee joint are calculated and analyzed under the load action of ‘heel strike', ‘single limb stance' and ‘toe-off'. The results of the gait cycle are that the contact areas of medial cartilage are larger than that of lateral cartilage; the contact force and contact areas would grow larger with the load increasing; the pressure of lateral meniscus is steady, relative to the significant variation of peak pressure in medial meniscus; and the peak value of contact pressure on all components are usually found at about 4570 of the gait cycle.展开更多
To predict hot tearing susceptibility(HTS)during solidification and improve the quality of Al alloy castings,constitutive equations for AA6111 alloys were developed using a direct finite element(FE)method.A hot tearin...To predict hot tearing susceptibility(HTS)during solidification and improve the quality of Al alloy castings,constitutive equations for AA6111 alloys were developed using a direct finite element(FE)method.A hot tearing model was established for direct chill(DC)casting of industrial AA6111 alloys via coupling FE model and hot tearing criterion.By applying this model to real manufacture processes,the effects of casting speed,bottom cooling,secondary cooling,and geometric variations on the HTS were revealed.The results show that the HTS of the billet increases as the speed and billet radius increase,while it reduces as the interfacial heat transfer coefficient at the bottom or secondary water-cooling rate increases.This model shows the capabilities of incorporating maximum pore fraction in simulating hot tearing initiation,which will have a significant impact on optimizing casting conditions and chemistry for minimizing HTS and thus controlling the casting quality.展开更多
The peristaltic transport of swallowed material in the esophagus is a neuro-muscular function involving the nerve control, bolus-structure interaction, and structure-mechanics relationship of the tissue. In this study...The peristaltic transport of swallowed material in the esophagus is a neuro-muscular function involving the nerve control, bolus-structure interaction, and structure-mechanics relationship of the tissue. In this study, a finite element model (FEM) was developed to simulate food transport through the esophagus. The FEM consists of three components, i.e., tissue, food bolus and peristaltic wave, as well as the interactions between them. The transport process was simulated as three stages, i.e., the filling of fluid, contraction of circular muscle and traveling of peristaltic wave. It was found that the maximal passive intraluminal pressure due to bolus expansion was in the range of 0.8-10 kPa and it increased with bolus volume and fluid viscosity. It was found that the highest normal and shear stresses were at the inner surface of muscle layer. In addition, the peak pressure required for the fluid flow was predicted to be 1-15 kPa at the bolus tail. The diseases of systemic sclerosis or osteogenesis imperfecta, with the remodeled microstructures and mechanical properties, might induce the malfunction of esophageal transport. In conclusion, the current simulation was demonstrated to be able to capture the main characteristics in the intraluminal pressure and bolus geometry as measured experimentally. Therefore, the finite element model established in this study could be used to further explore the mechanism of esophageal transport in various clinical applications.展开更多
Applying stiffness migration method,a 3D finite element mechanical model is established to simulate the excavation and advance processes.By using 3D nonlinear finite element method,the tunnel boring machine(TBM) excav...Applying stiffness migration method,a 3D finite element mechanical model is established to simulate the excavation and advance processes.By using 3D nonlinear finite element method,the tunnel boring machine(TBM) excavation process is dynamically simulated to analyze the stress and strain field status of surrounding rock and segment.The maximum tensile stress of segment ring caused by tunnel construction mainly lies in arch bottom and presents zonal distribution.The stress increases slightly and limitedly in the course of excavation.The maximum and minimum displacements of segment,manifesting as zonal distribution,distribute in arch bottom and vault respectively.The displacements slightly increase with the advance of TBM and gradually tend to stability.展开更多
An integrated approach was proposed to evaluate the remaining useful life(RUL)of corroded petroleum pipelines.Two types of failure modes(i.e.,leakage and burst failure)were considered,and the corresponding limit state...An integrated approach was proposed to evaluate the remaining useful life(RUL)of corroded petroleum pipelines.Two types of failure modes(i.e.,leakage and burst failure)were considered,and the corresponding limit state functions(LSFs)were established with the structural reliability theory.A power-law function was applied to model the growth of corrosion defects,and the effect of external environmental factors on the growth of the pipeline s defect was considered.Moreover,the result was compared with the commonly used linear growth model.After that,a finite element simulation model was established to calculate the burst pressure of the pipeline with corrosion defects,and its accuracy was verified through hydraulic burst test and by comparison with international criteria.On that basis,the probability that the pipeline may fail was calculated with Monte Carlo simulation(MCS)and by considering the LSFs,and the pipeline s RUL was obtained accordingly.Furthermore,sensitivity analysis was conducted to determine the sensitivity parameters for the corrosion and RUL of the pipeline.The results indicate that the radial corrosion rate,wall thickness and working pressure have a great influence on the failure probability of the pipeline.Thus,corresponding measures should be adopted during the operation process of the pipeline to reduce the corrosion rate and increase the wall thickness,so as to prolong the pipeline s RUL.展开更多
Deformation behavior,temperature evolution and coupled effects have a significant influence on forming process and quality of component formed,which are very complex in forming process of aluminum alloy 7075 cross val...Deformation behavior,temperature evolution and coupled effects have a significant influence on forming process and quality of component formed,which are very complex in forming process of aluminum alloy 7075 cross valve under multi-way loading due to the complexity of loading path and the multiplicity of associated processing parameters.A model of the process was developed under DFEORM-3D environment based on the coupled thermo-mechanical finite element method.The comparison between two process models,the conventional isothermal process model and the non-isothermal process model developed in this study,was carried out,and the results indicate that the thermal events play an important role in the aluminum alloy forming process under multi-way loading.The distributions and evolutions of the temperature field and strain filed are obtained by non-isothermal process simulation.The plastic zone and its extension in forming process of cross valve were analyzed.The results may provide guidelines for the determination of multi-way loading forming scheme and loading conditions of the forming cross valve components.展开更多
Linear motors generate high heat and cause significant deformation in high speed direct feed drive mechanisms.It is relevant to estimate their deformation behavior to improve their application in precision machine too...Linear motors generate high heat and cause significant deformation in high speed direct feed drive mechanisms.It is relevant to estimate their deformation behavior to improve their application in precision machine tools.This paper describes a method to estimate its thermal deformation based on updated finite element(FE)model methods.Firstly,a FE model is established for a linear motor drive test rig that includes the correlation between temperature rise and its resulting deformation.The relationship between the input and output variables of the FE model is identified with a modified multivariate input/output least square support vector regression machine.Additionally,the temperature rise and displacements at some critical points on the mechanism are obtained experimentally by a system of thermocouples and an interferometer.The FE model is updated through intelligent comparison between the experimentally measured values and the results from the regression machine.The experiments for testing thermal behavior along with the updated FE model simulations is conducted on the test rig in reciprocating cycle drive conditions.The results show that the intelligently updated FE model can be implemented to analyze the temperature variation distribution of the mechanism and to estimate its thermal behavior.The accuracy of the thermal behavior estimation with the optimally updated method can be more than double that of the initial theoretical FE model.This paper provides a simulation method that is effective to estimate the thermal behavior of the direct feed drive mechanism with high accuracy.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51805064,51701034)the Scientific and Technological Research Program of Chongqing Municipal Education Commission(Grant Nos.KJQN201801137,KJ1600922)+1 种基金the Basic and Advanced Research Project of Chongqing Science and Technology Commission(Grant Nos.cstc2017jcyj AX0062,cstc2018jcyj AX0035)the Chongqing University Key Laboratory of Micro/Nano Materials Engineering and Technology(Grant Nos.KFJJ2003)
文摘Isothermal hot compression experiments were conducted on homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy to investigate hot deformation behavior at the temperature range of 673-773 K and the strain rate range of 0.001-1 s^(-1)by using a Gleeble-1500D thermo mechanical simulator.Metallographic characterization on samples deformed to true strain of 0.70 illustrates the occurrence of flow localization and/or microcrack at deformation conditions of 673 K/0.01 s^(-1),673 K/1 s^(-1)and 698 K/1 s^(-1),indicating that these three deformation conditions should be excluded during hot working of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy.Based on the measured true stress-strain data,the strain-compensated Arrhenius constitutive model was constructed and then incorporated into UHARD subroutine of ABAQUS software to study hot deformation process of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy.By comparison with measured force-displacement curves,the predicted results can describe well the rheological behavior of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy,verifying the validity of finite element simulation of hot compression process with this complicated constitutive model.Numerical results demonstrate that the distribution of values of material parameters(α,n,Q and ln A)within deformed sample is inhomogeneous.This issue is directly correlated to the uneven distribution of equivalent plastic strain due to the friction effect.Moreover,at a given temperature the increase of strain rate would result in the decrease of equivalent plastic strain within the central region of deformed sample,which hinders the occurrence of dynamic recrystallization(DRX).
文摘The practice of exploration and production has proved that explosives are excited in different surrounding rocks and the seismic wavelets collected have different characteristics. In this paper, by establishing a numerical model of the explosion in the well, using finite element analysis technology for numerical simulation, the simulation calculated the stress structure in the near-source area of the earthquake excitation, and extracted the seismic wavelet. The results show that the simulation seismic wavelet characteristics of different thin interbedded sand and mudstone structures have changed significantly. Through excitation simulation, the amplitude and spectrum information of seismic wavelets can be compared and analyzed, and the excitation parameters can be optimized. .
文摘This study relies on the project about Jining to Tongliao railway electrification reconstruction project.The dynamic simulation model of the pantograph-OCS(overhead contact system)suitable for Jitong project is designed,according to the corresponding numerical calculation method and workflow.Firstly,We establish the pantograph and catenary′s BIM models,and the parameters related to the dynamic simulation of the pantograph system are attached to the BIM model.Then,the BIM model is transformed into a mechanical analysis model,which is input into the dynamic simulation software of pantograph-OCS.The rationality of the design scheme of the pantograph system is verified through simulation.
基金the National High Technical Reasearch and Development Programme of China (No. 2003AA327140) the National Natural Science Foundation of China (No. 50374081).
文摘Two full 3D steady mathematical models are developed by finite element method (FEM) to calcalate coupled physics fields. the electro-magnetic model is built and solved first and so is the fluid motion model with the acquired electromagnetic force as source body forces in Navier-Stokes equations. Effects caused by the ferromagnetic shell, busbar system around, and open boundary problem as well as inside induced current were considered in terms of the magnetic field. Furthermore, a new modeling method is found to set up solid models and then mesh them entirely with so-called structuralized grids, namely hex-mesh. Examples of 75kA prebaked cell with two kinds of busbar arrangements are presented. Results agree with those disclosed in the literature and confirm that the coupled simulation is valid. It is also concluded that the usage of these models facilitates the consistent analysis of the electric field to magnetic field and then flow motion to the greater extent, local distributions of current density and magnetic flux density are very much dependent on the cell structure, the steel shell is a shield to reduce the magnetic field and flow pattern is two dimensional in the main body of the metal pad.
基金Project(51105287)supported by the National Natural Science Foundation of China
文摘To investigate the effects of billet geometry on the cold precision forging process of a helical gear, six different billet geometries were designed utilizing the relief-hole principle. And the influences of the billet geometry on the forming load and the deformation uniformity were analyzed by three-dimensional (3D) finite element method (FEM) under the commercial software DEFORM 3D. The billet geometry was optimized to meet lower forming load and better deformation uniformity requirement. Deformation mechanism was studied through the distribution of flow velocity field and effective strain field. The forging experiments of the helical gear were successfully performed using lead material as a model material under the same process conditions used in the FE simulations. The results show that the forming load decreases as the diameter of relief-hole do increases, but the effect of do on the deformation uniformity is very complicated. The forming load is lower and the deformation is more uniform when do is 10 mm.
文摘Being aimed at the ground subsidence due to underground coal mining,a numerical model of rock was established and an appropriate method of numerical simulation was put forward.Using the measured subsidence data on the ground,the equivalent mechanical parameters of the rock stratums can be back-calculated by the properly treatment of coal excavation area,then the ground subsidence of other coal mining area can be predicted by FFM.It provided reference for the treatment of the buildings on the ground of this colliery.
基金Project (51171125) supported by the National Natural Science Foundation of China Project (20110321051 ) supported by the Science and Technology Key Project of Shanxi Province, China
文摘Materials with the same elastic modulus E and representative stress and strain (σr,εr) present similar indentation-loading curves, whatever the value of strain hardening exponent n. Based on this definition, a good approach was proposed to extract the plastic properties or constitutive equations of metals from nanoindentation test combining finite element simulation. Firstly, without consideration of strain hardening, the representative stress was determined by varying assumed representative stress over a wide range until a good agreement was reached between the computed and experimental loading curves. Similarly, the corresponding representative strain was determined with different hypothetical values of strain hardening exponent in the range of 0-0.6. Through modulating assumed strain hardening exponent values to make the computed unloading curve coincide with that of the experiment, the real strain hardening exponent was acquired. Once the strain hardening exponent was determined, the initial yield stress ay of metals could be obtained by the power law constitution. The validity of the proposed methodology was verified by three real metals: AISI 304 steel, Fe andA1 alloy.
基金supported by National Natural Science Foundation of China(No. 50175034).
文摘Single-point incremental forming (SPIF) is an innovational sheet metal forming method without dedicated dies, which belongs to rapid prototyping technology. In generalizing the SPIF of sheet metal, the deformation analysis on forming process becomes an important and useful method for the planning of shell products, the choice of material, the design of the forming process and the planning of the forming tool. Using solid brick elements, the finite element method(FEM) model of truncated pyramid was established. Based on the theory of anisotropy and assumed strain formulation, the SPIF processes with different parameters were simulated. The resulted comparison between the simulations and the experiments shows that the FEM model is feasible and effective. Then, according to the simulated forming process, the deformation pattern of SPIF can be summarized as the combination of plane-stretching deformation and bending deformation. And the study about the process parameters' impact on deformation shows that the process parameter of interlayer spacing is a dominant factor on the deformation. Decreasing interlayer spacing, the strain of one step decreases and the formability of blank will be improved. With bigger interlayer spacing, the plastic deformation zone increases and the forming force will be bigger.
文摘During the process of finite element simulation of precision warm forging, the selection of friction models has a direct effect on the precision accuracy of finite element simulation results. Among all the factors which influence the selection of friction models, the distribution rule of normal stress at the tool-workpiece interface is a key one. To find out the distribution rule of normal stress at the tool-workpiece interface, this paper has made a systematic research on three typical plastic deformation processes: forward extrusion, backward extrusion, and lateral extrusion by a method of finite element simulation. Then on the base of synthesizing and correcting traditional friction models, a new general friction model which is fit for warm extrusion is developed at last.
基金The work is supported by the National Natural Science Foundation of" China (51005180).
文摘A thermo-mechanical coupling.finite element model was built to investigate the inertia friction welding of GH4169 bars. The remeshing and map solution techniques were adopted. Ttle whole welding process was investigated by adopting an innovative heat generation model and the flywheel rotational speed measured via the experiment. The simulated evolution of axial shortening shows a good agreement with the experiment. In addition, extensive .strain concentration presents in the interface and flash, and the largest ,strain exists near the flash root. Moreover, an intere.sting thermal reflux phenomenon during the cooling stage was found.
基金Project(51675100)supported by the National Natural Science Foundation of ChinaProject(2016ZX04004008)supported by the National Numerical Control Equipment Major Project of ChinaProject(6902002116)supported by the Foundation of Certain Ministry of China
文摘In the process of thin-wall parts assembly for an antenna,the parts assembly deformation deviation is occurring due to the riveting assembly.In view of the riveting assembly deformation problems,it can be analyzed through transient and static simulation.In this work,the theoretical deformation model for riveting assembly is established with round head rivet.The simulation analysis for riveting deformation is carried out with the riveting assembly piece including four rivets,which comparing with the measuring points experiment results of riveting test piece through dealing with the experimental data using the point coordinate transform method and the space line fitting method.Simultaneously,the deformation deviation of the overall thin-wall parts assembly structure is analyzed through finite element simulation;and its results are verified by the measuring experiment for riveting assembly with the deformation deviation of some key points on the thin-wall parts.Through the comparison analysis,it is shown that the simulation results agree well with the experimental results,which proves the correctness and effectiveness of the theoretical analysis,simulation results and the given experiment data processing method.Through the study on the riveting assembly for thin-wall parts,it will provide a theoretical foundation for improving thin-wall parts assembly quality of large antenna in future.
基金Projects(50230310 ,50301016) supported by the National Natural Science Foundation of China project(2004053304)supported by the Doctor Program Foundation of the Ministry of Education of China project(2005CB623706) supported by the State KeyFundamental Research and Development Programof China
文摘A rate dependent crystal plasticity constitutive model considering self and latent hardening in finite element analysis was developed to simulate rolling textures of pure aluminum. By changing the assignment of orientations to finite elements, i.e. assigning the same set of orientations to all elements or different orientations to different elements, the influences of grain interaction on the formation of rolling textures were numerically simulated with this kind of crystal plasticity finite element model. The simulation results reveal that the grains without considering grain interaction rotate faster than those considering grain interaction, and the rotation of grain boundary is slowed down due to the grain interaction. For a good simulation more elements should be assigned to one grain, in which the effects of both the boundary and interior parts of grain contribute to the formation of rolling textures.
基金supported by the National Key Basic Research Program of China (No. 2007CB613802)the National Natural Science Foundation of China (No. 50805121)China Postdoctoral Science Foundation (No. 20080440192)
文摘The deep drawing of titanium thin-walled surface part was simulated based on a self-developed three-dimensional finite element model. After an investigation on forming rules, a virtual orthogonal experimental design was adopted to determine the significance of processing parameters, such as die radius, blank holder force, and friction coefficient, on the forming process. The distributions of thickness and equivalent plastic strain of the drawn part were evaluated. The results show that die radius has a relative major influence on the deep drawing process, followed by friction coefficient and blank holder force.
基金supported by the National Natural Science Foundation of China(No.10702048).
文摘Based on CT scanning pictures from a volunteer's knee joint, a three-dimensional finite element model of the healthy human knee joint is constructed including complete femur, tibia, fibular, patellar and the main cartilage and ligaments. This model was validated using experimental and numerical results obtained from other authors. The pressure distribution of contact surfaces of knee joint are calculated and analyzed under the load action of ‘heel strike', ‘single limb stance' and ‘toe-off'. The results of the gait cycle are that the contact areas of medial cartilage are larger than that of lateral cartilage; the contact force and contact areas would grow larger with the load increasing; the pressure of lateral meniscus is steady, relative to the significant variation of peak pressure in medial meniscus; and the peak value of contact pressure on all components are usually found at about 4570 of the gait cycle.
文摘To predict hot tearing susceptibility(HTS)during solidification and improve the quality of Al alloy castings,constitutive equations for AA6111 alloys were developed using a direct finite element(FE)method.A hot tearing model was established for direct chill(DC)casting of industrial AA6111 alloys via coupling FE model and hot tearing criterion.By applying this model to real manufacture processes,the effects of casting speed,bottom cooling,secondary cooling,and geometric variations on the HTS were revealed.The results show that the HTS of the billet increases as the speed and billet radius increase,while it reduces as the interfacial heat transfer coefficient at the bottom or secondary water-cooling rate increases.This model shows the capabilities of incorporating maximum pore fraction in simulating hot tearing initiation,which will have a significant impact on optimizing casting conditions and chemistry for minimizing HTS and thus controlling the casting quality.
基金Supported by the Agency for Science,Technology and Research and Nanyang Technological University,Singapore
文摘The peristaltic transport of swallowed material in the esophagus is a neuro-muscular function involving the nerve control, bolus-structure interaction, and structure-mechanics relationship of the tissue. In this study, a finite element model (FEM) was developed to simulate food transport through the esophagus. The FEM consists of three components, i.e., tissue, food bolus and peristaltic wave, as well as the interactions between them. The transport process was simulated as three stages, i.e., the filling of fluid, contraction of circular muscle and traveling of peristaltic wave. It was found that the maximal passive intraluminal pressure due to bolus expansion was in the range of 0.8-10 kPa and it increased with bolus volume and fluid viscosity. It was found that the highest normal and shear stresses were at the inner surface of muscle layer. In addition, the peak pressure required for the fluid flow was predicted to be 1-15 kPa at the bolus tail. The diseases of systemic sclerosis or osteogenesis imperfecta, with the remodeled microstructures and mechanical properties, might induce the malfunction of esophageal transport. In conclusion, the current simulation was demonstrated to be able to capture the main characteristics in the intraluminal pressure and bolus geometry as measured experimentally. Therefore, the finite element model established in this study could be used to further explore the mechanism of esophageal transport in various clinical applications.
基金Supported by National Natural Science Foundation of China(No.90815019)National Key Basic Research Program of China("973" Program,No.2007CB714101)Key Project in the National Science and Technology Pillar Program during the Eleventh Five-Year Plan Period(No.2006BAB04A13)
文摘Applying stiffness migration method,a 3D finite element mechanical model is established to simulate the excavation and advance processes.By using 3D nonlinear finite element method,the tunnel boring machine(TBM) excavation process is dynamically simulated to analyze the stress and strain field status of surrounding rock and segment.The maximum tensile stress of segment ring caused by tunnel construction mainly lies in arch bottom and presents zonal distribution.The stress increases slightly and limitedly in the course of excavation.The maximum and minimum displacements of segment,manifesting as zonal distribution,distribute in arch bottom and vault respectively.The displacements slightly increase with the advance of TBM and gradually tend to stability.
基金The National Natural Science Foundation of China(No.71671035,72001039)the Open Fund of Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment(No.201901)the Open Fund of Jiangsu Wind Power Engineering Technology Center(No.ZK19-03-03)。
文摘An integrated approach was proposed to evaluate the remaining useful life(RUL)of corroded petroleum pipelines.Two types of failure modes(i.e.,leakage and burst failure)were considered,and the corresponding limit state functions(LSFs)were established with the structural reliability theory.A power-law function was applied to model the growth of corrosion defects,and the effect of external environmental factors on the growth of the pipeline s defect was considered.Moreover,the result was compared with the commonly used linear growth model.After that,a finite element simulation model was established to calculate the burst pressure of the pipeline with corrosion defects,and its accuracy was verified through hydraulic burst test and by comparison with international criteria.On that basis,the probability that the pipeline may fail was calculated with Monte Carlo simulation(MCS)and by considering the LSFs,and the pipeline s RUL was obtained accordingly.Furthermore,sensitivity analysis was conducted to determine the sensitivity parameters for the corrosion and RUL of the pipeline.The results indicate that the radial corrosion rate,wall thickness and working pressure have a great influence on the failure probability of the pipeline.Thus,corresponding measures should be adopted during the operation process of the pipeline to reduce the corrosion rate and increase the wall thickness,so as to prolong the pipeline s RUL.
基金Project(50735005) supported by the National Natural Science Foundation for Key Program of ChinaProject(2006AA04Z135) supported by the National High-tech Research and Development Program of China+1 种基金Project supported by the Foundational Research Program of National Defence, ChinaProject supported by Northwestern Polytechnical University Foundation for Fundamental Research, China
文摘Deformation behavior,temperature evolution and coupled effects have a significant influence on forming process and quality of component formed,which are very complex in forming process of aluminum alloy 7075 cross valve under multi-way loading due to the complexity of loading path and the multiplicity of associated processing parameters.A model of the process was developed under DFEORM-3D environment based on the coupled thermo-mechanical finite element method.The comparison between two process models,the conventional isothermal process model and the non-isothermal process model developed in this study,was carried out,and the results indicate that the thermal events play an important role in the aluminum alloy forming process under multi-way loading.The distributions and evolutions of the temperature field and strain filed are obtained by non-isothermal process simulation.The plastic zone and its extension in forming process of cross valve were analyzed.The results may provide guidelines for the determination of multi-way loading forming scheme and loading conditions of the forming cross valve components.
基金Supported by National Natural Science Foundation of China(Grant No.51005158)National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No.2013ZX04008-011-02)
文摘Linear motors generate high heat and cause significant deformation in high speed direct feed drive mechanisms.It is relevant to estimate their deformation behavior to improve their application in precision machine tools.This paper describes a method to estimate its thermal deformation based on updated finite element(FE)model methods.Firstly,a FE model is established for a linear motor drive test rig that includes the correlation between temperature rise and its resulting deformation.The relationship between the input and output variables of the FE model is identified with a modified multivariate input/output least square support vector regression machine.Additionally,the temperature rise and displacements at some critical points on the mechanism are obtained experimentally by a system of thermocouples and an interferometer.The FE model is updated through intelligent comparison between the experimentally measured values and the results from the regression machine.The experiments for testing thermal behavior along with the updated FE model simulations is conducted on the test rig in reciprocating cycle drive conditions.The results show that the intelligently updated FE model can be implemented to analyze the temperature variation distribution of the mechanism and to estimate its thermal behavior.The accuracy of the thermal behavior estimation with the optimally updated method can be more than double that of the initial theoretical FE model.This paper provides a simulation method that is effective to estimate the thermal behavior of the direct feed drive mechanism with high accuracy.