相比较正交频分复用,正交时频空间(orthogonal time frequency space,OTFS)调制具有较低峰均功率比,能有效抵抗多普勒产生的时间选择性衰落,在双扩展信道中具有良好的性能优势。然而,常规的OTFS线性最小均方误差(linear minimum mean sq...相比较正交频分复用,正交时频空间(orthogonal time frequency space,OTFS)调制具有较低峰均功率比,能有效抵抗多普勒产生的时间选择性衰落,在双扩展信道中具有良好的性能优势。然而,常规的OTFS线性最小均方误差(linear minimum mean square error,LMMSE)方法复杂度高,不易实时处理,为解决这一问题,提出了基于最优坐标下降的无穷范数约束均衡算法。该算法通过一定的迭代次数得到最优解,避免了直接矩阵求逆,采用无穷范数约束均衡提升了符号检测的性能增益。同时利用OTFS在时延-多普勒域信道矩阵每列向量二范数平方相等和稀疏性的特点,进一步降低坐标下降的复杂度。在设计的水声通信场景下,对所提均衡算法的有效性进行了仿真验证,结果表明所提均衡算法在保证低复杂度情况下误码性能接近最小均方误差性能。展开更多
Reasonable bit error rate performance requires perfect channel state information (CSI) in traditional turbo equalization (TE), which is hard to obtain in practice. Soft and hard iterative algorithms have been deve...Reasonable bit error rate performance requires perfect channel state information (CSI) in traditional turbo equalization (TE), which is hard to obtain in practice. Soft and hard iterative algorithms have been developed to address the channel estimation problem with the performance of the soft iteratwe channel estimate based on the recursive least square algorithm. This paper presents an analysis of the performance of hard iterative channel estimation (HICE) based on the least mean square algorithm. The analysis uses a cost function with the hard decision on the TE output. An iterative channel correction (ICC) algorithm based on the gradient descent algorithm is used to iteratively minimize the cost function. The simulation results agree with the theoretical lower bound for the mean square error (MSE) of the estimated channels. Simulations show that, given an imperfect CSI with an MSE below the upper bound, the linear minimum mean squared error TE (LMMSE-TE) using the ICC has only small performance degradation compared to that with a perfect CSI, while the traditional LMMSE-TE suffers from severe error floor effect even with more iterations.展开更多
基金Acknowledgment: This work was partly supported by the National Natural Science Foundation of China(60672150) and Science and Technology Planning Project of Shenzhen, China (szkj0706).
文摘相比较正交频分复用,正交时频空间(orthogonal time frequency space,OTFS)调制具有较低峰均功率比,能有效抵抗多普勒产生的时间选择性衰落,在双扩展信道中具有良好的性能优势。然而,常规的OTFS线性最小均方误差(linear minimum mean square error,LMMSE)方法复杂度高,不易实时处理,为解决这一问题,提出了基于最优坐标下降的无穷范数约束均衡算法。该算法通过一定的迭代次数得到最优解,避免了直接矩阵求逆,采用无穷范数约束均衡提升了符号检测的性能增益。同时利用OTFS在时延-多普勒域信道矩阵每列向量二范数平方相等和稀疏性的特点,进一步降低坐标下降的复杂度。在设计的水声通信场景下,对所提均衡算法的有效性进行了仿真验证,结果表明所提均衡算法在保证低复杂度情况下误码性能接近最小均方误差性能。
基金Supported by the National High-Tech Research and Development (863) Program of China
文摘Reasonable bit error rate performance requires perfect channel state information (CSI) in traditional turbo equalization (TE), which is hard to obtain in practice. Soft and hard iterative algorithms have been developed to address the channel estimation problem with the performance of the soft iteratwe channel estimate based on the recursive least square algorithm. This paper presents an analysis of the performance of hard iterative channel estimation (HICE) based on the least mean square algorithm. The analysis uses a cost function with the hard decision on the TE output. An iterative channel correction (ICC) algorithm based on the gradient descent algorithm is used to iteratively minimize the cost function. The simulation results agree with the theoretical lower bound for the mean square error (MSE) of the estimated channels. Simulations show that, given an imperfect CSI with an MSE below the upper bound, the linear minimum mean squared error TE (LMMSE-TE) using the ICC has only small performance degradation compared to that with a perfect CSI, while the traditional LMMSE-TE suffers from severe error floor effect even with more iterations.