Non-line-of-sight imaging detection is to detect hidden objects by indirect light and intermediary surface(diffuser).It has very important significance in indirect access to an object or dangerous object detection, ...Non-line-of-sight imaging detection is to detect hidden objects by indirect light and intermediary surface(diffuser).It has very important significance in indirect access to an object or dangerous object detection, such as medical treatment and rescue. An approach to locating the positions of hidden objects is proposed based on time delay estimation. The time delays between the received signals and the source signal can be obtained by correlation analysis, and then the positions of hidden objects will be located. Compared with earlier systems and methods, the proposed approach has some modifications and provides significant improvements, such as quick data acquisition, simple system structure and low cost, and can locate the positions of hidden objects as well: this technology lays a good foundation for developing a practical system that can be used in real applications.展开更多
“Objective Correlative”theory was first proposed by T.S. Eliot, who holds that people’s emotion can find expression in a series of objective correlative. In his poem The Love Song of J.Alfred Prufrock, the use of o...“Objective Correlative”theory was first proposed by T.S. Eliot, who holds that people’s emotion can find expression in a series of objective correlative. In his poem The Love Song of J.Alfred Prufrock, the use of objective correlative fully reflects and reveals modern people’s loneliness, futility and alienation.展开更多
Light plays an essential role in psychobiological and psychophysiological processes,such as alertness.The alerting effect is influenced by light characteristics and the timing of interventions.This meta-analysis is th...Light plays an essential role in psychobiological and psychophysiological processes,such as alertness.The alerting effect is influenced by light characteristics and the timing of interventions.This meta-analysis is the first to systematically review the effect of light intervention on alertness and to discuss the optimal protocol for light intervention.In this meta-analysis,registered at PROSPERO(Registration ID:CRD42020181485),we conducted a systematic search of the Web of Science,PubMed,and PsycINFO databases for studies published in English prior to August 2021.The outcomes included both subjective and objective alertness.Subgroup analyses considered a variety of factors,such as wavelength,correlated color temperature(CCT),light illuminance,and timing of interventions(daytime,night-time,or all day).Twenty-seven crossover studies and two parallel-group studies were included in this meta-analysis,with a total of 1210 healthy participants(636(52%)male,mean age 25.62 years).The results revealed that light intervention had a positive effect on both subjective alertness(standardized mean difference(SMD)=-0.28,95%confidence interval(CI):-0.49 to-0.06,P=0.01)and objective alertness in healthy subjects(SMD=-0.34,95%CI:-0.68 to-0.01,P=0.04).The subgroup analysis revealed that cold light was better than warm light in improving subjective alertness(SMD=-0.37,95%CI:-0.65 to-0.10,P=0.007,I2=26%)and objective alertness(SMD=-0.36,95%CI:-0.66 to-0.07,P=0.02,I2=0).Both daytime(SMD=-0.22,95%CI:-0.37 to-0.07,P=0.005,I2=74%)and night-time(SMD=-0.32,95%CI:-0.61 to-0.02,P=0.04,I2=0)light exposure improved subjective alertness.The results of this meta-analysis and systematic review indicate that light exposure is associated with significant improvement in subjective and objective alertness.In addition,light exposure with a higher CCT was more effective in improving alertness than light exposure with a lower CCT.Our results also suggest that both daytime and night-time light exposure can improve subjective alertness.展开更多
During T.S. Eliot's(1888-1965)whole life he left us a lot of fortune, and The Love Song of J. Alfred Prufrock is considered as one of Eliot's finest and most important works. A lot of scholars and critics have...During T.S. Eliot's(1888-1965)whole life he left us a lot of fortune, and The Love Song of J. Alfred Prufrock is considered as one of Eliot's finest and most important works. A lot of scholars and critics have done different researches on this poem.The author of this paper tries to analyze one of these poems from the perspective of T.S. Eliot's poetics.展开更多
The methods of deformation analysis and modeling at single point are realized easily now,but available approaches do not make full use of the information from monitoring points and can not reveal integrated deformatio...The methods of deformation analysis and modeling at single point are realized easily now,but available approaches do not make full use of the information from monitoring points and can not reveal integrated deformation regularity of a deformable body.This paper presents a fuzzy clusetering method to analyze the correlative relations of multiple points in space,and then the spatial model for a practical dangerous rockmass in the area of Three Gorges,Yangtze River is established,in which the correlation of six points in space is analyzed by geological investigation and fuzzy set theory.展开更多
This paper presents experiment results of the measurement conducted at the Roznew Dam power plant. For a course of starting and operating of turbo-plants, downstream face of the dam was monitored in relation to its ev...This paper presents experiment results of the measurement conducted at the Roznew Dam power plant. For a course of starting and operating of turbo-plants, downstream face of the dam was monitored in relation to its eventual displacements on direction parallel to the construction axis. For the purpose of the experiment, geodetic measurement techniques and 2D DIC (digital image correlation) method (utilizing photographs of the object recorded with digital camera) were compared with regard to credibility, efficiency and accuracy. The vertical and horizontal displacements were monitored by tachometers measurements. The deformations in x-axis and y-axis on the wall surface was monitored by 2D DIC. It has been noticed that 2D DIC method is a surface method, continuous--not discreet. It allows for continuous observations of surface deformations, which is not possible in case of tachemetric measurements. Despite many advantages, the 2D DIC method lacks unambiguous evaluation of precision and relevance of designated displacements, which is rather significant for possibilities of utilization in technical control of large engineered objects. It should be also marked that the tachometric method is more reliable but is more laborious. Research of this type might comprise additional element for the assessment of the influence of dynamic loads, such as activating turbine water flow, onto the overall condition of the surveyed structure.展开更多
The field of object tracking has recently made significant progress.Particularly,the performance results in both deep learning and correlation filters,based trackers achieved effective tracking performance.Moreover,th...The field of object tracking has recently made significant progress.Particularly,the performance results in both deep learning and correlation filters,based trackers achieved effective tracking performance.Moreover,there are still some difficulties with object tracking for example illumination and deformation(DEF).The precision and accuracy of tracking algorithms suffer from the effects of such occurrences.For this situation,finding a solution is important.This research proposes a new tracking algorithm to handle this problem.The features are extracted by using Modified LeNet-5,and the precision and accuracy are improved by developing the Real-Time Cross-modality Correlation Filtering method(RCCF).In Modified LeNet-5,the visual tracking performance is improved by adjusting the number and size of the convolution kernels in the pooling and convolution layers.The high-level,middle-level,and handcraft features are extracted from the modified LeNet-5 network.The handcraft features are used to determine the specific location of the target because the handcraft features contain more spatial information regarding the visual object.The LeNet features are more suitable for a target appearance change in object tracking.Extensive experiments were conducted by the Object Tracking Benchmarking(OTB)databases like OTB50 and OTB100.The experimental results reveal that the proposed tracker outperforms other state-of-the-art trackers under different problems.The experimental simulation is carried out in python.The overall success rate and precision of the proposed algorithm are 93.8%and 92.5%.The average running frame rate reaches 42 frames per second,which can meet the real-time requirements.展开更多
Aiming at the problem that a single correlation filter model is sensitive to complex scenes such as background interference and occlusion,a tracking algorithm based on multi-time-space perception and instance-specific...Aiming at the problem that a single correlation filter model is sensitive to complex scenes such as background interference and occlusion,a tracking algorithm based on multi-time-space perception and instance-specific proposals is proposed to optimize the mathematical model of the correlation filter(CF).Firstly,according to the consistency of the changes between the object frames and the filter frames,the mask matrix is introduced into the objective function of the filter,so as to extract the spatio-temporal information of the object with background awareness.Secondly,the object function of multi-feature fusion is constructed for the object location,which is optimized by the Lagrange method and solved by closed iteration.In the process of filter optimization,the constraints term of time-space perception is designed to enhance the learning ability of the CF to optimize the final track-ing results.Finally,when the tracking results fluctuate,the boundary suppres-sion factor is introduced into the instance-specific proposals to reduce the risk of model drift effectively.The accuracy and success rate of the proposed algorithm are verified by simulation analysis on two popular benchmarks,the object tracking benchmark 2015(OTB2015)and the temple color 128(TC-128).Extensive experimental results illustrate that the optimized appearance model of the proposed algorithm is effective.The distance precision rate and overlap success rate of the proposed algorithm are 0.756 and 0.656 on the OTB2015 benchmark,which are better than the results of other competing algorithms.The results of this study can solve the problem of real-time object tracking in the real traffic environment and provide a specific reference for the detection of traffic abnormalities.展开更多
Improved picture quality is critical to the effectiveness of object recog-nition and tracking.The consistency of those photos is impacted by night-video systems because the contrast between high-profile items and diffe...Improved picture quality is critical to the effectiveness of object recog-nition and tracking.The consistency of those photos is impacted by night-video systems because the contrast between high-profile items and different atmospheric conditions,such as mist,fog,dust etc.The pictures then shift in intensity,colour,polarity and consistency.A general challenge for computer vision analyses lies in the horrid appearance of night images in arbitrary illumination and ambient envir-onments.In recent years,target recognition techniques focused on deep learning and machine learning have become standard algorithms for object detection with the exponential growth of computer performance capabilities.However,the iden-tification of objects in the night world also poses further problems because of the distorted backdrop and dim light.The Correlation aware LSTM based YOLO(You Look Only Once)classifier method for exact object recognition and deter-mining its properties under night vision was a major inspiration for this work.In order to create virtual target sets similar to daily environments,we employ night images as inputs;and to obtain high enhanced image using histogram based enhancement and iterative wienerfilter for removing the noise in the image.The process of the feature extraction and feature selection was done for electing the potential features using the Adaptive internal linear embedding(AILE)and uplift linear discriminant analysis(ULDA).The region of interest mask can be segmen-ted using the Recurrent-Phase Level set Segmentation.Finally,we use deep con-volution feature fusion and region of interest pooling to integrate the presently extremely sophisticated quicker Long short term memory based(LSTM)with YOLO method for object tracking system.A range of experimentalfindings demonstrate that our technique achieves high average accuracy with a precision of 99.7%for object detection of SSAN datasets that is considerably more than that of the other standard object detection mechanism.Our approach may therefore satisfy the true demands of night scene target detection applications.We very much believe that our method will help future research.展开更多
基金supported by the National Science and Technology Major Project of China(Grant No.AHJ2011Z001)the Major Research Project of Yili Normal University(Grant No.2016YSZD05)
文摘Non-line-of-sight imaging detection is to detect hidden objects by indirect light and intermediary surface(diffuser).It has very important significance in indirect access to an object or dangerous object detection, such as medical treatment and rescue. An approach to locating the positions of hidden objects is proposed based on time delay estimation. The time delays between the received signals and the source signal can be obtained by correlation analysis, and then the positions of hidden objects will be located. Compared with earlier systems and methods, the proposed approach has some modifications and provides significant improvements, such as quick data acquisition, simple system structure and low cost, and can locate the positions of hidden objects as well: this technology lays a good foundation for developing a practical system that can be used in real applications.
文摘“Objective Correlative”theory was first proposed by T.S. Eliot, who holds that people’s emotion can find expression in a series of objective correlative. In his poem The Love Song of J.Alfred Prufrock, the use of objective correlative fully reflects and reveals modern people’s loneliness, futility and alienation.
基金supported by the National Natural Science Foundation of China,No.82172530(to QT)Science and Technology Program of Guangdong,No.2018B030334001(to CRR)Guangzhou Science and Technology Project,No.202007030012(to QT).
文摘Light plays an essential role in psychobiological and psychophysiological processes,such as alertness.The alerting effect is influenced by light characteristics and the timing of interventions.This meta-analysis is the first to systematically review the effect of light intervention on alertness and to discuss the optimal protocol for light intervention.In this meta-analysis,registered at PROSPERO(Registration ID:CRD42020181485),we conducted a systematic search of the Web of Science,PubMed,and PsycINFO databases for studies published in English prior to August 2021.The outcomes included both subjective and objective alertness.Subgroup analyses considered a variety of factors,such as wavelength,correlated color temperature(CCT),light illuminance,and timing of interventions(daytime,night-time,or all day).Twenty-seven crossover studies and two parallel-group studies were included in this meta-analysis,with a total of 1210 healthy participants(636(52%)male,mean age 25.62 years).The results revealed that light intervention had a positive effect on both subjective alertness(standardized mean difference(SMD)=-0.28,95%confidence interval(CI):-0.49 to-0.06,P=0.01)and objective alertness in healthy subjects(SMD=-0.34,95%CI:-0.68 to-0.01,P=0.04).The subgroup analysis revealed that cold light was better than warm light in improving subjective alertness(SMD=-0.37,95%CI:-0.65 to-0.10,P=0.007,I2=26%)and objective alertness(SMD=-0.36,95%CI:-0.66 to-0.07,P=0.02,I2=0).Both daytime(SMD=-0.22,95%CI:-0.37 to-0.07,P=0.005,I2=74%)and night-time(SMD=-0.32,95%CI:-0.61 to-0.02,P=0.04,I2=0)light exposure improved subjective alertness.The results of this meta-analysis and systematic review indicate that light exposure is associated with significant improvement in subjective and objective alertness.In addition,light exposure with a higher CCT was more effective in improving alertness than light exposure with a lower CCT.Our results also suggest that both daytime and night-time light exposure can improve subjective alertness.
文摘During T.S. Eliot's(1888-1965)whole life he left us a lot of fortune, and The Love Song of J. Alfred Prufrock is considered as one of Eliot's finest and most important works. A lot of scholars and critics have done different researches on this poem.The author of this paper tries to analyze one of these poems from the perspective of T.S. Eliot's poetics.
文摘The methods of deformation analysis and modeling at single point are realized easily now,but available approaches do not make full use of the information from monitoring points and can not reveal integrated deformation regularity of a deformable body.This paper presents a fuzzy clusetering method to analyze the correlative relations of multiple points in space,and then the spatial model for a practical dangerous rockmass in the area of Three Gorges,Yangtze River is established,in which the correlation of six points in space is analyzed by geological investigation and fuzzy set theory.
文摘This paper presents experiment results of the measurement conducted at the Roznew Dam power plant. For a course of starting and operating of turbo-plants, downstream face of the dam was monitored in relation to its eventual displacements on direction parallel to the construction axis. For the purpose of the experiment, geodetic measurement techniques and 2D DIC (digital image correlation) method (utilizing photographs of the object recorded with digital camera) were compared with regard to credibility, efficiency and accuracy. The vertical and horizontal displacements were monitored by tachometers measurements. The deformations in x-axis and y-axis on the wall surface was monitored by 2D DIC. It has been noticed that 2D DIC method is a surface method, continuous--not discreet. It allows for continuous observations of surface deformations, which is not possible in case of tachemetric measurements. Despite many advantages, the 2D DIC method lacks unambiguous evaluation of precision and relevance of designated displacements, which is rather significant for possibilities of utilization in technical control of large engineered objects. It should be also marked that the tachometric method is more reliable but is more laborious. Research of this type might comprise additional element for the assessment of the influence of dynamic loads, such as activating turbine water flow, onto the overall condition of the surveyed structure.
文摘The field of object tracking has recently made significant progress.Particularly,the performance results in both deep learning and correlation filters,based trackers achieved effective tracking performance.Moreover,there are still some difficulties with object tracking for example illumination and deformation(DEF).The precision and accuracy of tracking algorithms suffer from the effects of such occurrences.For this situation,finding a solution is important.This research proposes a new tracking algorithm to handle this problem.The features are extracted by using Modified LeNet-5,and the precision and accuracy are improved by developing the Real-Time Cross-modality Correlation Filtering method(RCCF).In Modified LeNet-5,the visual tracking performance is improved by adjusting the number and size of the convolution kernels in the pooling and convolution layers.The high-level,middle-level,and handcraft features are extracted from the modified LeNet-5 network.The handcraft features are used to determine the specific location of the target because the handcraft features contain more spatial information regarding the visual object.The LeNet features are more suitable for a target appearance change in object tracking.Extensive experiments were conducted by the Object Tracking Benchmarking(OTB)databases like OTB50 and OTB100.The experimental results reveal that the proposed tracker outperforms other state-of-the-art trackers under different problems.The experimental simulation is carried out in python.The overall success rate and precision of the proposed algorithm are 93.8%and 92.5%.The average running frame rate reaches 42 frames per second,which can meet the real-time requirements.
基金funded by the Basic Science Major Foundation(Natural Science)of the Jiangsu Higher Education Institutions of China(Grant:22KJA520012)the Xuzhou Science and Technology Plan Project(Grant:KC21303,KC22305)the sixth“333 project”of Jiangsu Province.
文摘Aiming at the problem that a single correlation filter model is sensitive to complex scenes such as background interference and occlusion,a tracking algorithm based on multi-time-space perception and instance-specific proposals is proposed to optimize the mathematical model of the correlation filter(CF).Firstly,according to the consistency of the changes between the object frames and the filter frames,the mask matrix is introduced into the objective function of the filter,so as to extract the spatio-temporal information of the object with background awareness.Secondly,the object function of multi-feature fusion is constructed for the object location,which is optimized by the Lagrange method and solved by closed iteration.In the process of filter optimization,the constraints term of time-space perception is designed to enhance the learning ability of the CF to optimize the final track-ing results.Finally,when the tracking results fluctuate,the boundary suppres-sion factor is introduced into the instance-specific proposals to reduce the risk of model drift effectively.The accuracy and success rate of the proposed algorithm are verified by simulation analysis on two popular benchmarks,the object tracking benchmark 2015(OTB2015)and the temple color 128(TC-128).Extensive experimental results illustrate that the optimized appearance model of the proposed algorithm is effective.The distance precision rate and overlap success rate of the proposed algorithm are 0.756 and 0.656 on the OTB2015 benchmark,which are better than the results of other competing algorithms.The results of this study can solve the problem of real-time object tracking in the real traffic environment and provide a specific reference for the detection of traffic abnormalities.
文摘Improved picture quality is critical to the effectiveness of object recog-nition and tracking.The consistency of those photos is impacted by night-video systems because the contrast between high-profile items and different atmospheric conditions,such as mist,fog,dust etc.The pictures then shift in intensity,colour,polarity and consistency.A general challenge for computer vision analyses lies in the horrid appearance of night images in arbitrary illumination and ambient envir-onments.In recent years,target recognition techniques focused on deep learning and machine learning have become standard algorithms for object detection with the exponential growth of computer performance capabilities.However,the iden-tification of objects in the night world also poses further problems because of the distorted backdrop and dim light.The Correlation aware LSTM based YOLO(You Look Only Once)classifier method for exact object recognition and deter-mining its properties under night vision was a major inspiration for this work.In order to create virtual target sets similar to daily environments,we employ night images as inputs;and to obtain high enhanced image using histogram based enhancement and iterative wienerfilter for removing the noise in the image.The process of the feature extraction and feature selection was done for electing the potential features using the Adaptive internal linear embedding(AILE)and uplift linear discriminant analysis(ULDA).The region of interest mask can be segmen-ted using the Recurrent-Phase Level set Segmentation.Finally,we use deep con-volution feature fusion and region of interest pooling to integrate the presently extremely sophisticated quicker Long short term memory based(LSTM)with YOLO method for object tracking system.A range of experimentalfindings demonstrate that our technique achieves high average accuracy with a precision of 99.7%for object detection of SSAN datasets that is considerably more than that of the other standard object detection mechanism.Our approach may therefore satisfy the true demands of night scene target detection applications.We very much believe that our method will help future research.