期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
DLP Learning from Uncertain Data
1
作者 朱曼 高志强 +1 位作者 漆桂林 季秋 《Tsinghua Science and Technology》 SCIE EI CAS 2010年第6期650-656,共7页
Description logic programs (DLP) are an expressive but tractable subset of OWL. This paper ana-lyzes the important under-researched problem of learning DLP from uncertain data. Current studies have rarely explored t... Description logic programs (DLP) are an expressive but tractable subset of OWL. This paper ana-lyzes the important under-researched problem of learning DLP from uncertain data. Current studies have rarely explored the plentiful uncertain data populating the semantic web. This algorithm handles uncertain data in an inductive logic programming framework by modifying the performance evaluation criteria. A pseudo-log-likelihood based measure is used to evaluate the performance of different literals under uncer-tainties. Experiments on two datasets demonstrate that the approach is able to automatically learn a rule-set from uncertain data with acceptable accuracy. 展开更多
关键词 description logic programs inductive logic programming Markov logic networks
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部